12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Budget constraint and vaccine dosing: a mathematical modelling exercise

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Increasing the number of vaccine doses may potentially improve overall efficacy. Decision-makers need information about choosing the most efficient dose schedule to maximise the total health gain of a population when operating under a constrained budget. The objective of this study is to identify the most efficient vaccine dosing schedule within a fixed vaccination budget from a healthcare payer perspective.

          Methods

          An optimisation model is developed in which maximizing the disease reduction is the functional objective and the constraint is the vaccination budget. The model allows variation in vaccination dosing numbers, in cost difference per dose, in vaccine coverage rate, and in vaccine efficacy. We apply the model using the monovalent rotavirus vaccine as an example.

          Results

          With a fixed budget, a 2-dose schedule for vaccination against rotavirus infection with the monovalent vaccine results in a larger reduction in disease episodes than a 3-dose scheme with the same vaccine under most circumstances. A 3-dose schedule would only be better under certain conditions: a cost reduction of >26% per dose, combined with vaccine efficacy improvement of ≥5% and a target coverage rate of 75%. Substantial interaction is observed between cost reduction per dose, vaccine coverage rate, and increased vaccine efficacy. Sensitivity analysis shows that the conditions required for a 3-dose strategy to be better than a 2-dose strategy may seldom occur when the budget is fixed. The model does not consider vaccine herd effect, precise timing for additional doses, or the effect of natural immunity development.

          Conclusions

          Under budget constraint, optimisation modelling is a helpful tool for a decision-maker selecting the most efficient vaccination dosing schedule. The low dosing scheme could be the optimal option to consider under the many scenarios tested. The model can be applied under many different circumstances of changing dosing schemes with single or multiple vaccines.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of human rotavirus vaccine on severe diarrhea in African infants.

          Rotavirus is the most common cause of severe gastroenteritis among young children worldwide. Data are needed to assess the efficacy of the rotavirus vaccine in African children. We conducted a randomized, placebo-controlled, multicenter trial in South Africa (3166 infants; 64.1% of the total) and Malawi (1773 infants; 35.9% of the total) to evaluate the efficacy of a live, oral rotavirus vaccine in preventing severe rotavirus gastroenteritis. Healthy infants were randomly assigned in a 1:1:1 ratio to receive two doses of vaccine (in addition to one dose of placebo) or three doses of vaccine--the pooled vaccine group--or three doses of placebo at 6, 10, and 14 weeks of age. Episodes of gastroenteritis caused by wild-type rotavirus during the first year of life were assessed through active follow-up surveillance and were graded with the use of the Vesikari scale. A total of 4939 infants were enrolled and randomly assigned to one of the three groups; 1647 infants received two doses of the vaccine, 1651 infants received three doses of the vaccine, and 1641 received placebo. Of the 4417 infants included in the per-protocol efficacy analysis, severe rotavirus gastroenteritis occurred in 4.9% of the infants in the placebo group and in 1.9% of those in the pooled vaccine group (vaccine efficacy, 61.2%; 95% confidence interval, 44.0 to 73.2). Vaccine efficacy was lower in Malawi than in South Africa (49.4% vs. 76.9%); however, the number of episodes of severe rotavirus gastroenteritis that were prevented was greater in Malawi than in South Africa (6.7 vs. 4.2 cases prevented per 100 infants vaccinated per year). Efficacy against all-cause severe gastroenteritis was 30.2%. At least one serious adverse event was reported in 9.7% of the infants in the pooled vaccine group and in 11.5% of the infants in the placebo group. Human rotavirus vaccine significantly reduced the incidence of severe rotavirus gastroenteritis among African infants during the first year of life. (ClinicalTrials.gov number, NCT00241644.) 2010 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial.

            Rotavirus vaccine has proved effective for prevention of severe rotavirus gastroenteritis in infants in developed countries, but no efficacy studies have been done in developing countries in Asia. We assessed the clinical efficacy of live oral pentavalent rotavirus vaccine for prevention of severe rotavirus gastroenteritis in infants in Bangladesh and Vietnam. In this multicentre, double-blind, placebo-controlled trial, undertaken in rural Matlab, Bangladesh, and urban and periurban Nha Trang, Vietnam, infants aged 4-12 weeks without symptoms of gastrointestinal disorders were randomly assigned (1:1) to receive three oral doses of pentavalent rotavirus vaccine 2 mL or placebo at around 6 weeks, 10 weeks, and 14 weeks of age, in conjunction with routine infant vaccines including oral poliovirus vaccine. Randomisation was done by computer-generated randomisation sequence in blocks of six. Episodes of gastroenteritis in infants who presented to study medical facilities were reported by clinical staff and from parent recollection. The primary endpoint was severe rotavirus gastroenteritis (Vesikari score >or=11) arising 14 days or more after the third dose of placebo or vaccine to end of study (March 31, 2009; around 21 months of age). Analysis was per protocol; infants who received scheduled doses of vaccine or placebo without intervening laboratory-confirmed naturally occurring rotavirus disease earlier than 14 days after the third dose and had complete clinical and laboratory results were included in the analysis. This study is registered with ClinicalTrials.gov, number NCT00362648. 2036 infants were randomly assigned to receive pentavalent rotavirus vaccine (n=1018) or placebo (n=1018). 991 infants assigned to pentavalent rotavirus vaccine and 978 assigned to placebo were included in the per-protocol analysis. Median follow up from 14 days after the third dose of placebo or vaccine until final disposition was 498 days (IQR 480-575). 38 cases of severe rotavirus gastroenteritis (Vesikari score >or=11) were reported during more than 1197 person-years of follow up in the vaccine group, compared with 71 cases in more than 1156 person years in the placebo group, resulting in a vaccine efficacy of 48.3% (95% CI 22.3-66.1) against severe disease (p=0.0005 for efficacy >0%) during nearly 2 years of follow-up. 25 (2.5%) of 1017 infants assigned to receive vaccine and 20 (2.0%) of 1018 assigned to receive placebo had a serious adverse event within 14 days of any dose. The most frequent serious adverse event was pneumonia (vaccine 12 [1.2%]; placebo 15 [1.5%]). In infants in developing countries in Asia, pentavalent rotavirus vaccine is safe and efficacious against severe rotavirus gastroenteritis, and our results support expanded WHO recommendations to promote its global use. PATH (GAVI Alliance grant) and Merck. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: a randomized, double-blind, placebo controlled trial.

              Rotavirus gastroenteritis is a major cause of morbidity and mortality among African infants and young children. A phase III, placebo-controlled, multi-centre clinical trial of a live, oral G1P[8] human rotavirus vaccine (RIX4414) undertaken in Malawi and South Africa significantly reduced the incidence of severe rotavirus gastroenteritis in the first year of life. We now report on vaccine efficacy in the Malawi cohort of children who were followed into the second year of life. A total of 1773 healthy infants were enrolled in Blantyre, Malawi into three groups. Two groups received three doses of RIX4414 or placebo at age 6, 10, and 14 weeks and the third group received placebo at 6 weeks and RIX4414 at age 10 and 14 weeks. Subjects were followed by weekly home visits for episodes of gastroenteritis until 1 year of age, and were then re-consented for further follow-up to 18-24 months of age. Severity of gastroenteritis episodes was graded according to the Vesikari scoring system. Seroconversion for anti-rotavirus IgA was determined on a subset of children by using ELISA on pre- and post-vaccine blood samples. Rotavirus VP7 (G) and VP4 (P) genotypes were determined by RT-PCR. A total of 70/1030 (6.8%, 95% CI 5.3-8.5) subjects in the pooled (2 dose plus 3 dose) RIX4414 group compared with 53/483 (11.0%, 8.3-14.1) subjects in the placebo group developed severe rotavirus gastroenteritis in the entire follow-up period (vaccine efficacy 38.1% (9.8-57.3)). The point estimate of efficacy in the second year of life (17.6%; -59.2 to 56.0) was lower than in the first year of life (49.4%; 19.2-68.3). There were non-significant trends towards a higher efficacy in the second year of life among children who received the three-dose schedule compared with the two-dose schedule, and a higher anti-rotavirus IgA seroresponse rate in the three-dose RIX4414 group. Rotavirus strains detected included genotype G12 (31%); G9 (23%); and G8 (18%); only 18% of strains belonged to the G1P[8] genotype. While the optimal dosing schedule of RIX4414 in African infants requires further investigation, vaccination with RIX4414 significantly reduced the incidence of severe gastroenteritis caused by diverse rotavirus strains in an impoverished African population with high rotavirus disease burden in the first two years of life. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cost Eff Resour Alloc
                Cost Eff Resour Alloc
                Cost Effectiveness and Resource Allocation : C/E
                BioMed Central
                1478-7547
                2014
                22 January 2014
                : 12
                : 3
                Affiliations
                [1 ]Health Economics Department, GlaxoSmithKline Vaccines, Avenue Fleming 20, 1300 Wavre, Belgium
                [2 ]Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
                Article
                1478-7547-12-3
                10.1186/1478-7547-12-3
                3904011
                24450591
                78448bc5-0322-4c41-b059-f2d3d2fffbce
                Copyright © 2014 Standaert et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 August 2013
                : 2 January 2014
                Categories
                Research

                Public health
                rotavirus,vaccination,economic evaluation,budget optimisation modelling
                Public health
                rotavirus, vaccination, economic evaluation, budget optimisation modelling

                Comments

                Comment on this article