60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the first trimester the extravillous cytotrophoblast cells occlude the uterine spiral arterioles creating a low oxygen environment early in pregnancy, which is essential for pregnancy success. Paradoxically, shallow trophoblast invasion and defective vascular remodelling of the uterine spiral arteries in the first trimester may result in impaired placental perfusion and chronic placental ischemia and hypoxia later in gestation leading to adverse pregnancy outcomes. The hypoxia inducible factors (HIFs) are key mediators of the response to low oxygen. We aimed to elucidate mechanisms of regulation of HIFs and the role these may play in the control of placental differentiation, growth and function in both normal and pathological pregnancies. The Pubmed database was consulted for identification of the most relevant published articles. Search terms used were oxygen, placenta, trophoblast, pregnancy, HIF and hypoxia. The HIFs are able to function throughout all aspects of normal and abnormal placental differentiation, growth and function; during the first trimester (physiologically low oxygen), during mid-late gestation (where there is adequate supply of blood and oxygen to the placenta) and in pathological pregnancies complicated by placental hypoxia/ischemia. During normal pregnancy HIFs may respond to complex alterations in oxygen, hormones, cytokines and growth factors to regulate placental invasion, differentiation, transport and vascularization. In the ever-changing environment created during pregnancy, the HIFs appear to act as key mediators of placental development and function and thereby are likely to be important contributors to both normal and adverse pregnancy outcomes.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.

          HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIF-1: mediator of physiological and pathophysiological responses to hypoxia.

            All organisms can sense O(2) concentration and respond to hypoxia with adaptive changes in gene expression. The large body size of mammals necessitates the development of multiple complex physiological systems to ensure adequate O(2) delivery to all cells under normal conditions. The transcriptional regulator hypoxia-inducible factor 1 (HIF-1) is an essential mediator of O(2) homeostasis. HIF-1 is required for the establishment of key physiological systems during development and their subsequent utilization in fetal and postnatal life. HIF-1 also appears to play a key role in the pathophysiology of cancer, cardiovascular disease, and chronic lung disease, which represent the major causes of mortality among industrialized societies. Genetic or pharmacological modulation of HIF-1 activity in vivo may represent a novel therapeutic approach to these disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy

              Physiological conversion of the maternal spiral arteries is key to a successful human pregnancy. It involves loss of smooth muscle and the elastic lamina from the vessel wall as far as the inner third of the myometrium, and is associated with a 5–10-fold dilation at the vessel mouth. Failure of conversion accompanies common complications of pregnancy, such as early-onset preeclampsia and fetal growth restriction. Here, we model the effects of terminal dilation on inflow of blood into the placental intervillous space at term, using dimensions in the literature derived from three-dimensional reconstructions. We observe that dilation slows the rate of flow from 2 to 3 m/s in the non-dilated part of an artery of 0.4–0.5 mm diameter to approximately 10 cm/s at the 2.5 mm diameter mouth, depending on the exact radius and viscosity. This rate predicts a transit time through the intervillous space of approximately 25 s, which matches observed times closely. The model shows that in the absence of conversion blood will enter the intervillous space as a turbulent jet at rates of 1–2 m/s. We speculate that the high momentum will damage villous architecture, rupturing anchoring villi and creating echogenic cystic lesions as evidenced by ultrasound. The retention of smooth muscle will also increase the risk of spontaneous vasoconstriction and ischaemia–reperfusion injury, generating oxidative stress. Dilation has a surprisingly modest impact on total blood flow, and so we suggest the placental pathology associated with deficient conversion is dominated by rheological consequences rather than chronic hypoxia.
                Bookmark

                Author and article information

                Journal
                Hum Reprod Update
                humupd
                humupd
                Human Reproduction Update
                Oxford University Press
                1355-4786
                1460-2369
                Jul-Aug 2010
                19 November 2009
                19 November 2009
                : 16
                : 4
                : 415-431
                Affiliations
                [1 ]Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, simpleUniversity of Adelaide , Adelaide, SA 5005, Australia
                [2 ]Animal and Agricultural Science, simpleUniversity of Adelaide , Roseworthy, SA 5005, Australia
                [3 ]Present address: Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences, simpleUniversity of Newcastle , Newcastle, NSW 2310, Australia
                [4 ]Present address: Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, simpleUniversity of Cambridge , Cambridge CB2 3EG, UK
                Author notes
                [5 ]Correspondence address. E-mail: claire.roberts@ 123456adelaide.edu.au
                Article
                dmp046
                10.1093/humupd/dmp046
                2880912
                19926662
                786ad0cd-6aa7-4e86-85f0-ac8448a716cc
                © The Author 2009. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. For Permissions, please email: journals.permissions@oxfordjournals.org

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 January 2009
                : 31 August 2009
                : 28 September 2009
                Categories
                Reviews

                Human biology
                hypoxia,placenta,trophoblast,hypoxia inducible factor,oxygen
                Human biology
                hypoxia, placenta, trophoblast, hypoxia inducible factor, oxygen

                Comments

                Comment on this article