6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Drug Monitoring of Meropenem and Piperacillin in Critical Illness—Experience and Recommendations from One Year in Routine Clinical Practice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various studies have reported insufficient beta-lactam concentrations in critically ill patients. The extent to which therapeutic drug monitoring (TDM) in clinical practice can reduce insufficient antibiotic concentrations is an ongoing matter of investigation. We retrospectively evaluated routine meropenem and piperacillin measurements in critically ill patients who received antibiotics as short infusions in the first year after initiating a beta-lactam TDM program. Total trough concentrations above 8.0 mg/L for meropenem and above 22.5 mg/L for piperacillin were defined as the breakpoints for target attainment. We included 1832 meropenem samples and 636 piperacillin samples. We found that 39.3% of meropenem and 33.6% of piperacillin samples did not reach the target concentrations. We observed a clear correlation between renal function and antibiotic concentration (meropenem, r = 0.53; piperacillin, r = 0.63). Patients with renal replacement therapy or creatinine clearance (CrCl) of <70 mL/min had high rates of target attainment with the standard dosing regimens. There was a low number of patients with a CrCl >100 mL/min that achieved the target concentrations with the maximum recommended dosage. Patients with impaired renal function only required TDM if toxic side effects were noted. In contrast, patients with normal renal function required different dosage regimens and TDM-guided therapy to reach the breakpoints of target attainment.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock.

          Our goal was to determine the impact of the initiation of inappropriate antimicrobial therapy on survival to hospital discharge of patients with septic shock. The appropriateness of initial antimicrobial therapy, the clinical infection site, and relevant pathogens were retrospectively determined for 5,715 patients with septic shock in three countries. Therapy with appropriate antimicrobial agents was initiated in 80.1% of cases. Overall, the survival rate was 43.7%. There were marked differences in the distribution of comorbidities, clinical infections, and pathogens in patients who received appropriate and inappropriate initial antimicrobial therapy (p < 0.0001 for each). The survival rates after appropriate and inappropriate initial therapy were 52.0% and 10.3%, respectively (odds ratio [OR], 9.45; 95% CI, 7.74 to 11.54; p < 0.0001). Similar differences in survival were seen in all major epidemiologic, clinical, and organism subgroups. The decrease in survival with inappropriate initial therapy ranged from 2.3-fold for pneumococcal infection to 17.6-fold with primary bacteremia. After adjustment for acute physiology and chronic health evaluation II score, comorbidities, hospital site, and other potential risk factors, the inappropriateness of initial antimicrobial therapy remained most highly associated with risk of death (OR, 8.99; 95% CI, 6.60 to 12.23). Inappropriate initial antimicrobial therapy for septic shock occurs in about 20% of patients and is associated with a fivefold reduction in survival. Efforts to increase the frequency of the appropriateness of initial antimicrobial therapy must be central to efforts to reduce the mortality of patients with septic shock.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?

            Morbidity and mortality for critically ill patients with infections remains a global healthcare problem. We aimed to determine whether β-lactam antibiotic dosing in critically ill patients achieves concentrations associated with maximal activity and whether antibiotic concentrations affect patient outcome. This was a prospective, multinational pharmacokinetic point-prevalence study including 8 β-lactam antibiotics. Two blood samples were taken from each patient during a single dosing interval. The primary pharmacokinetic/pharmacodynamic targets were free antibiotic concentrations above the minimum inhibitory concentration (MIC) of the pathogen at both 50% (50% f T>MIC) and 100% (100% f T>MIC) of the dosing interval. We used skewed logistic regression to describe the effect of antibiotic exposure on patient outcome. We included 384 patients (361 evaluable patients) across 68 hospitals. The median age was 61 (interquartile range [IQR], 48-73) years, the median Acute Physiology and Chronic Health Evaluation II score was 18 (IQR, 14-24), and 65% of patients were male. Of the 248 patients treated for infection, 16% did not achieve 50% f T>MIC and these patients were 32% less likely to have a positive clinical outcome (odds ratio [OR], 0.68; P = .009). Positive clinical outcome was associated with increasing 50% f T>MIC and 100% f T>MIC ratios (OR, 1.02 and 1.56, respectively; P < .03), with significant interaction with sickness severity status. Infected critically ill patients may have adverse outcomes as a result of inadeqaute antibiotic exposure; a paradigm change to more personalized antibiotic dosing may be necessary to improve outcomes for these most seriously ill patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams

              Introduction Several reports have shown marked heterogeneity of antibiotic pharmacokinetics (PK) in patients admitted to ICUs, which might potentially affect outcomes. Therefore, the pharmacodynamic (PD) parameter of the efficacy of β-lactam antibiotics, that is, the time that its concentration is above the bacteria minimal inhibitory concentration (T > MIC), cannot be safely extrapolated from data derived from the PK of healthy volunteers. Methods We performed a full review of published studies addressing the PK of intravenous β-lactam antibiotics given to infected ICU patients. Study selection comprised a comprehensive bibliographic search of the PubMed database and bibliographic references in relevant reviews from January 1966 to December 2010. We selected only English-language articles reporting studies addressing β-lactam antibiotics that had been described in at least five previously published studies. Studies of the PK of patients undergoing renal replacement therapy were excluded. Results A total of 57 studies addressing six different β-lactam antibiotics (meropenem, imipenem, piperacillin, cefpirome, cefepime and ceftazidime) were selected. Significant PK heterogeneity was noted, with a broad, more than twofold variation both of volume of distribution and of drug clearance (Cl). The correlation of antibiotic Cl with creatinine clearance was usually reported. Consequently, in ICU patients, β-lactam antibiotic half-life and T > MIC were virtually unpredictable, especially in those patients with normal renal function. A better PD profile was usually obtained by prolonged or even continuous infusion. Tissue penetration was also found to be compromised in critically ill patients with septic shock. Conclusions The PK of β-lactam antibiotics are heterogeneous and largely unpredictable in ICU patients. Consequently, the dosing of antibiotics should be supported by PK concepts, including data derived from studies of the PK of ICU patients and therapeutic drug monitoring.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                21 March 2020
                March 2020
                : 9
                : 3
                : 131
                Affiliations
                [1 ]Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; ines.schroeder@ 123456med.uni-muenchen.de (I.S.); michael.irlbeck@ 123456med.uni-muenchen.de (M.I.); michael.zoller@ 123456med.uni-muenchen.de (M.Z.); uwe.liebchen@ 123456med.uni-muenchen.de (U.L.)
                [2 ]Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; michael.paal@ 123456med.uni-muenchen.de (M.P.); Michael.Vogeser@ 123456med.uni-muenchen.de (M.V.)
                [3 ]Section Clinical Infectious Diseases, University Hospital, LMU Munich, 81377 Munich, Germany; rika.draenert@ 123456med.uni-muenchen.de
                Author notes
                [* ]Correspondence: Christina.scharf@ 123456med.uni-muenchen.de ; Fax: +49-89-4400-78886
                [†]

                These authors contributed equally to this project and are therefore both considered first author.

                Article
                antibiotics-09-00131
                10.3390/antibiotics9030131
                7148485
                32245195
                786eec0c-6677-4574-925d-7fad60525e5c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 February 2020
                : 19 March 2020
                Categories
                Article

                meropenem,piperacillin,therapeutic drug monitoring (tdm),critical illness,renal function,pharmacokinetic,experience

                Comments

                Comment on this article