7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Climate shapes and shifts functional biodiversity in forests worldwide

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Much ecological research aims to explain how climate impacts biodiversity and ecosystem-level processes through functional traits that link environment with individual performance. However, the specific climatic drivers of functional diversity across space and time remain unclear due largely to limitations in the availability of paired trait and climate data. We compile and analyze a global forest dataset using a method based on abundance-weighted trait moments to assess how climate influences the shapes of whole-community trait distributions. Our approach combines abundance-weighted metrics with diverse climate factors to produce a comprehensive catalog of trait–climate relationships that differ dramatically—27% of significant results change in sign and 71% disagree on sign, significance, or both—from traditional species-weighted methods. We find that ( i) functional diversity generally declines with increasing latitude and elevation, ( ii) temperature variability and vapor pressure are the strongest drivers of geographic shifts in functional composition and ecological strategies, and ( iii) functional composition may currently be shifting over time due to rapid climate warming. Our analysis demonstrates that climate strongly governs functional diversity and provides essential information needed to predict how biodiversity and ecosystem function will respond to climate change.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Benefits of plant diversity to ecosystems: immediate, filter and founder effects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global patterns of plant leaf N and P in relation to temperature and latitude.

              A global data set including 5,087 observations of leaf nitrogen (N) and phosphorus (P) for 1,280 plant species at 452 sites and of associated mean climate indices demonstrates broad biogeographic patterns. In general, leaf N and P decline and the N/P ratio increases toward the equator as average temperature and growing season length increase. These patterns are similar for five dominant plant groups, coniferous trees and four angiosperm groups (grasses, herbs, shrubs, and trees). These results support the hypotheses that (i) leaf N and P increase from the tropics to the cooler and drier midlatitudes because of temperature-related plant physiological stoichiometry and biogeographical gradients in soil substrate age and then plateau or decrease at high latitudes because of cold temperature effects on biogeochemistry and (ii) the N/P ratio increases with mean temperature and toward the equator, because P is a major limiting nutrient in older tropical soils and N is the major limiting nutrient in younger temperate and high-latitude soils.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 24 2018
                : 201813723
                Article
                10.1073/pnas.1813723116
                6329988
                30584087
                78701a4c-c6c2-480d-a089-a157926b39cb
                © 2018

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article