31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Short Leukocyte Telomere Length Predicts Risk of Diabetes in American Indians: the Strong Heart Family Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomeres play a central role in cellular aging, and shorter telomere length has been associated with age-related disorders including diabetes. However, a causal link between telomere shortening and diabetes risk has not been established. In a well-characterized longitudinal cohort of American Indians participating in the Strong Heart Family Study, we examined whether leukocyte telomere length (LTL) at baseline predicts incident diabetes independent of known diabetes risk factors. Among 2,328 participants free of diabetes at baseline, 292 subjects developed diabetes during an average 5.5 years of follow-up. Compared with subjects in the highest quartile (longest) of LTL, those in the lowest quartile (shortest) had an almost twofold increased risk of incident diabetes (hazard ratio [HR] 1.83 [95% CI 1.26–2.66]), whereas the risk for those in the second (HR 0.87 [95% CI 0.59–1.29]) and the third (HR 0.95 [95% CI 0.65–1.38]) quartiles was statistically nonsignificant. These findings suggest a nonlinear association between LTL and incident diabetes and indicate that LTL could serve as a predictive marker for diabetes development in American Indians, who suffer from disproportionately high rates of diabetes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity, cigarette smoking, and telomere length in women.

          Obesity and smoking are important risk factors for many age-related diseases. Both are states of heightened oxidative stress, which increases the rate of telomere erosion per replication, and inflammation, which enhances white blood cell turnover. Together, these processes might accelerate telomere erosion with age. We therefore tested the hypothesis that increased body mass and smoking are associated with shortened telomere length in white blood cells. We investigated 1122 white women aged 18-76 years and found that telomere length decreased steadily with age at a mean rate of 27 bp per year. Telomeres of obese women were 240 bp shorter than those of lean women (p=0.026). A dose-dependent relation with smoking was recorded (p=0.017), and each pack-year smoked was equivalent to an additional 5 bp of telomere length lost (18%) compared with the rate in the overall cohort. Our results emphasise the pro-ageing effects of obesity and cigarette smoking.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults.

            (1998)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance.

              Telomeres are the DNA-protein complexes that protect the ends of eukaryotic chromosomes. The cellular enzyme telomerase counteracts telomere shortening by adding telomeric DNA. A growing body of literature links shorter telomere length and lower telomerase activity with various age-related diseases and earlier mortality. Thus, leukocyte telomere length (LTL) and telomerase activity are emerging both as biomarkers and contributing factors for age-related diseases. However, no clinical study has directly examined telomerase activity and telomere length in different lymphocyte subtypes isolated from the same donors, which could offer insight into the summary measure of leukocyte telomere maintenance. We report the first quantitative data in humans examining both levels of telomerase activity and telomere length in four lymphocyte subpopulations from the same donors-CD4+, CD8+CD28+ and CD8+CD28- T cells and B cells, as well as total PBMCs-in a cohort of healthy women. We found that B cells had the highest telomerase activity and longest telomere length; CD4+ T cells had slightly higher telomerase activity than CD8+CD28+ T cells, and similar telomere length. Consistent with earlier reports that CD8+CD28- T cells are replicatively senescent cells, they had the lowest telomerase activity and shortest telomere length. In addition, a higher percentage of CD8+CD28- T cells correlated with shorter total PBMC TL (r=-0.26, p=0.05). Interestingly, telomerase activities of CD4+ and CD8+CD28+ T cells from the same individual were strongly correlated (r=0.55, r<0.001), indicating possible common mechanisms for telomerase activity regulation in these two cell subtypes. These data will facilitate the understanding of leukocyte aging and its relationship to human health. Copyright 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                January 2014
                13 December 2013
                : 63
                : 1
                : 354-362
                Affiliations
                [1] 1Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
                [2] 2Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
                [3] 3Center for American Indian Health Research, University of Oklahoma Health Science Center, Oklahoma City, OK
                [4] 4Texas Biomedical Research Institute, San Antonio, TX
                [5] 5Missouri Breaks Industries Research Inc., Timber Lake, SD
                [6] 6MedStar Research Institute, Hyattsville, MD
                Author notes
                Corresponding author: Jinying Zhao, jzhao5@ 123456tulane.edu .
                Article
                0744
                10.2337/db13-0744
                3868043
                23949319
                787503ff-1394-4588-bcdc-30fa7ea5c922
                © 2014 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 08 May 2013
                : 09 August 2013
                Page count
                Pages: 9
                Categories
                Genetics/Genomes/Proteomics/Metabolomics

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article