30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we present MARVEL, a tool for prediction of double-stranded DNA bacteriophage sequences in metagenomic bins. MARVEL uses a random forest machine learning approach. We trained the program on a dataset with 1,247 phage and 1,029 bacterial genomes, and tested it on a dataset with 335 bacterial and 177 phage genomes. We show that three simple genomic features extracted from contig sequences were sufficient to achieve a good performance in separating bacterial from phage sequences: gene density, strand shifts, and fraction of significant hits to a viral protein database. We compared the performance of MARVEL to that of VirSorter and VirFinder, two popular programs for predicting viral sequences. Our results show that all three programs have comparable specificity, but MARVEL achieves much better performance on the recall (sensitivity) measure. This means that MARVEL should be able to identify many more phage sequences in metagenomic bins than heretofore has been possible. In a simple test with real data, containing mostly bacterial sequences, MARVEL classified 58 out of 209 bins as phage genomes; other evidence suggests that 57 of these 58 bins are novel phage sequences. MARVEL is freely available at https://github.com/LaboratorioBioinformatica/MARVEL.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.

          J Besemer (2001)
          Improving the accuracy of prediction of gene starts is one of a few remaining open problems in computer prediction of prokaryotic genes. Its difficulty is caused by the absence of relatively strong sequence patterns identifying true translation initiation sites. In the current paper we show that the accuracy of gene start prediction can be improved by combining models of protein-coding and non-coding regions and models of regulatory sites near gene start within an iterative Hidden Markov model based algorithm. The new gene prediction method, called GeneMarkS, utilizes a non-supervised training procedure and can be used for a newly sequenced prokaryotic genome with no prior knowledge of any protein or rRNA genes. The GeneMarkS implementation uses an improved version of the gene finding program GeneMark.hmm, heuristic Markov models of coding and non-coding regions and the Gibbs sampling multiple alignment program. GeneMarkS predicted precisely 83.2% of the translation starts of GenBank annotated Bacillus subtilis genes and 94.4% of translation starts in an experimentally validated set of Escherichia coli genes. We have also observed that GeneMarkS detects prokaryotic genes, in terms of identifying open reading frames containing real genes, with an accuracy matching the level of the best currently used gene detection methods. Accurate translation start prediction, in addition to the refinement of protein sequence N-terminal data, provides the benefit of precise positioning of the sequence region situated upstream to a gene start. Therefore, sequence motifs related to transcription and translation regulatory sites can be revealed and analyzed with higher precision. These motifs were shown to possess a significant variability, the functional and evolutionary connections of which are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metagenomics: application of genomics to uncultured microorganisms.

            Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data

              Background Identifying viral sequences in mixed metagenomes containing both viral and host contigs is a critical first step in analyzing the viral component of samples. Current tools for distinguishing prokaryotic virus and host contigs primarily use gene-based similarity approaches. Such approaches can significantly limit results especially for short contigs that have few predicted proteins or lack proteins with similarity to previously known viruses. Methods We have developed VirFinder, the first k-mer frequency based, machine learning method for virus contig identification that entirely avoids gene-based similarity searches. VirFinder instead identifies viral sequences based on our empirical observation that viruses and hosts have discernibly different k-mer signatures. VirFinder’s performance in correctly identifying viral sequences was tested by training its machine learning model on sequences from host and viral genomes sequenced before 1 January 2014 and evaluating on sequences obtained after 1 January 2014. Results VirFinder had significantly better rates of identifying true viral contigs (true positive rates (TPRs)) than VirSorter, the current state-of-the-art gene-based virus classification tool, when evaluated with either contigs subsampled from complete genomes or assembled from a simulated human gut metagenome. For example, for contigs subsampled from complete genomes, VirFinder had 78-, 2.4-, and 1.8-fold higher TPRs than VirSorter for 1, 3, and 5 kb contigs, respectively, at the same false positive rates as VirSorter (0, 0.003, and 0.006, respectively), thus VirFinder works considerably better for small contigs than VirSorter. VirFinder furthermore identified several recently sequenced virus genomes (after 1 January 2014) that VirSorter did not and that have no nucleotide similarity to previously sequenced viruses, demonstrating VirFinder’s potential advantage in identifying novel viral sequences. Application of VirFinder to a set of human gut metagenomes from healthy and liver cirrhosis patients reveals higher viral diversity in healthy individuals than cirrhosis patients. We also identified contig bins containing crAssphage-like contigs with higher abundance in healthy patients and a putative Veillonella genus prophage associated with cirrhosis patients. Conclusions This innovative k-mer based tool complements gene-based approaches and will significantly improve prokaryotic viral sequence identification, especially for metagenomic-based studies of viral ecology. Electronic supplementary material The online version of this article (doi:10.1186/s40168-017-0283-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                07 August 2018
                2018
                : 9
                : 304
                Affiliations
                [1] 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo, Brazil
                [2] 2INRA, UMR 1347, Agroécologie , Dijon, France
                [3] 3Biocomplexity Institute of Virginia Tech , Blacksburg, VA, United States
                Author notes

                Edited by: Alfredo Pulvirenti, Università degli Studi di Catania, Italy

                Reviewed by: Ayman Sabry El-Baz, University of Louisville, United States; Cuncong Zhong, The University of Kansas, United States

                *Correspondence: João C. Setubal, joao.c.setubal@ 123456gmail.com

                This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2018.00304
                6090037
                30131825
                788253e9-fcdc-4af3-a365-6df0c1608241
                Copyright © 2018 Amgarten, Braga, da Silva and Setubal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 May 2018
                : 18 July 2018
                Page count
                Figures: 3, Tables: 2, Equations: 4, References: 53, Pages: 8, Words: 0
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo 10.13039/501100001807
                Award ID: 2011/50870-6
                Award ID: 2014/16450-8
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 10.13039/501100003593
                Funded by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 10.13039/501100002322
                Award ID: 3385/2013
                Categories
                Genetics
                Original Research

                Genetics
                phage,virus,microbiome,machine learning,random forest
                Genetics
                phage, virus, microbiome, machine learning, random forest

                Comments

                Comment on this article