9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insights into the mechanism and catalysis of the native chemical ligation reaction.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Native chemical ligation of unprotected peptide segments involves reaction between a peptide-alpha-thioester and a cysteine-peptide, to yield a product with a native amide bond at the ligation site. Peptide-alpha-thioalkyl esters are commonly used because of their ease of preparation. These thioalkyl esters are rather unreactive so the ligation reaction is catalyzed by in situ transthioesterification with thiol additives. The most common thiol catalysts used to date have been either a mixture of thiophenol/benzyl mercaptan, or the alkanethiol MESNA. Despite the use of these thiol catalysts, ligation reactions typically take 24-48 h. To gain insight into the mechanism of native chemical ligaton and in order to find a better catalyst, we investigated the use of a number of thiol compounds. Substituted thiophenols with pK(a) > 6 were found to best combine the ability to exchange rapidly and completely with thioalkyl esters, and to then act as effective leaving groups in reaction of the peptide-thioester with the thiol side chain of a cysteine-peptide. A highly effective and practical catalyst was (4-carboxylmethyl)thiophenol ('MPAA'), a nonmalodorous, water-soluble thiol. Use of MPAA gave an order of magnitude faster reaction in model studies of native chemical ligation and in the synthesis of a small protein, turkey ovomucoid third domain (OMTKY3). MPAA should find broad use in native chemical ligation and in the total synthesis of proteins.

          Related collections

          Author and article information

          Journal
          J Am Chem Soc
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          0002-7863
          0002-7863
          May 24 2006
          : 128
          : 20
          Affiliations
          [1 ] Department of Biochemistry and Molecular Biology, The University of Chicago, Illinois 60637, USA.
          Article
          10.1021/ja058344i
          16704265
          78850637-a192-4bdf-9075-bdfc36d535fa
          History

          Comments

          Comment on this article