22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effects of curcumin co-treatment in rats with establishing chronic variable stress on testis and reproductive hormones

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Protracted and repeated exposure to chronic variable stress (CVS) may lead to reproductive dysfunction. It is a basic cause of male infertility. Curcumin (CUR) is an active fraction of turmeric that used in traditional Chinese medicine. CUR represents various pharmacological activities.

          Objective:

          The purpose of this study was to determining the effects of CUR on testis and testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) in rats with establishing chronic variable stress.

          Materials and Methods:

          Twenty-one adult male Sprague-Dawley rats were divided into three groups: 1) control, 2) CVS and 3) CVS+ CUR (100 mg/kg/day dissolved in 0.5 mL of olive oil). All of the animals in control, CVS, and CVS+CUR groups were sacrificed after 15 days. Testosterone, FSH, LH, and testis damage were evaluated.

          Results:

          Significant changes in the normal range of testosterone, FSH, LH serum levels and seminiferous tubule apoptotic cells were detected in CVS group compared to the control rats (p=0.02). These parameters changed to a less extent in CVS+CUR animals compared to the CVS rats (p=0.02).

          Conclusion:

          Our findings propose that curcumin might have curative potential on the reproductive system function and its impairment. It’s regulated by stress and reproductive-related hormones.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Curcumin: the story so far.

          Curcumin is a polyphenol derived from the herbal remedy and dietary spice turmeric. It possesses diverse anti-inflammatory and anti-cancer properties following oral or topical administration. Apart from curcumin's potent antioxidant capacity at neutral and acidic pH, its mechanisms of action include inhibition of several cell signalling pathways at multiple levels, effects on cellular enzymes such as cyclooxygenase and glutathione S-transferases, immuno-modulation and effects on angiogenesis and cell-cell adhesion. Curcumin's ability to affect gene transcription and to induce apoptosis in preclinical models is likely to be of particular relevance to cancer chemoprevention and chemotherapy in patients. Although curcumin's low systemic bioavailability following oral dosing may limit access of sufficient concentrations for pharmacological effect in certain tissues, the attainment of biologically active levels in the gastrointestinal tract has been demonstrated in animals and humans. Sufficient data currently exist to advocate phase II clinical evaluation of oral curcumin in patients with invasive malignancy or pre-invasive lesions of the gastrointestinal tract, particularly the colon and rectum.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress, inflammation, and defense of homeostasis.

            Inflammation is traditionally considered a defense response induced by infection or injury. However, inflammation can also be induced by tissue stress and malfunction in the absence of infection or overt tissue damage. Here we discuss the relationship between homeostasis, stress responses, and inflammation. Stress responses have cell-autonomous and cell-extrinsic components, the latter contributing to tissue level adaptation to stress conditions. Inflammation can be thought of as the extreme end of a spectrum that ranges from homeostasis to stress response to bona fide inflammatory response. Inflammation can be triggered by two types of stimuli: extreme deviations of homeostasis or challenges that cause a disruption of homeostasis. This perspective may help to explain qualitative differences and functional outcomes of diverse inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reproduction and resistance to stress: when and how.

              Environmental and social stresses have deleterious effects on reproductive function in vertebrates. Global climate change, human disturbance and endocrine disruption from pollutants are increasingly likely to pose additional stresses that could have a major impact on human society. Nonetheless, some populations of vertebrates (from fish to mammals) are able to temporarily resist environmental and social stresses, and breed successfully. A classical trade-off of reproductive success for potential survival is involved. We define five examples. (i) Aged individuals with minimal future reproductive success that should attempt to breed despite potential acute stressors. (ii) Seasonal breeders when time for actual breeding is so short that acute stress should be resisted in favour of reproductive success. (iii) If both members of a breeding pair provide parental care, then loss of a mate should be compensated for by the remaining individual. (iv) Semelparous species in which there is only one breeding period followed by programmed death. (v) Species where, because of the transience of dominance status in a social group, individuals may only have a short window of opportunity for mating. We suggest four mechanisms underlying resistance of the gonadal axis to stress. (i) Blockade at the central nervous system level, i.e. an individual no longer perceives the perturbation as stressful. (ii) Blockade at the level of the hypothalamic-pituitary-adrenal axis (i.e. failure to increase secretion of glucocorticosteroids). (iii) Blockade at the level of the hypothalamic-pituitary-gonad axis (i.e. resistance of the reproductive system to the actions of glucocorticosteroids). (iv) Compensatory stimulation of the gonadal axis to counteract inhibitory glucocorticosteroid actions. Although these mechanisms are likely genetically determined, their expression may depend upon a complex interaction with environmental factors. Future research will provide valuable information on the biology of stress and how organisms cope. Such mechanisms would be particularly insightful as the spectre of global change continues to unfold.
                Bookmark

                Author and article information

                Journal
                Int J Reprod Biomed (Yazd)
                Int J Reprod Biomed (Yazd)
                IJRB
                International Journal of Reproductive Biomedicine
                Research and Clinical Center for Infertility (Yazd, Iran )
                2476-4108
                2476-3772
                July 2017
                : 15
                : 7
                : 447-452
                Affiliations
                [1 ] Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
                [2 ] Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
                Author notes
                Corresponding Author: Elham Aliabadi, Shiraz University of Medical Sciences, Zand Ave., Shiraz, Iran. Postal code: 71348-45794. Email: aliabade@sums.ac.ir, Tel: (+98) 713 2304372
                Article
                ijrb-15-447
                5601937
                788b036b-42f5-4538-99ef-feae635e7339

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 December 2016
                : 14 March 2017
                : 27 May 2017
                Categories
                Original Article

                testosterone,follicle stimulating hormone,luteinizing hormone,cvs,curcumin

                Comments

                Comment on this article