Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A wave of monocytes is recruited to replenish the long-term Langerhans cell network after immune injury

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A dense population of embryo-derived Langerhans cells (eLCs) is maintained within the sealed epidermis without contribution from circulating cells. When this network is perturbed by transient exposure to ultraviolet light, short-term LCs are temporarily reconstituted from an initial wave of monocytes but thought to be superseded by more permanent repopulation with undefined LC precursors. However, the extent to which this process is relevant to immunopathological processes that damage LC population integrity is not known. Using a model of allogeneic hematopoietic stem cell transplantation, where alloreactive T cells directly target eLCs, we have asked whether and how the original LC network is ultimately restored. We find that donor monocytes, but not dendritic cells, are the precursors of long-term LCs in this context. Destruction of eLCs leads to recruitment of a wave of monocytes that engraft in the epidermis and undergo a sequential pathway of differentiation via transcriptionally distinct EpCAM + precursors. Monocyte-derived LCs acquire the capacity of self-renewal, and proliferation in the epidermis matched that of steady-state eLCs. However, we identified a bottleneck in the differentiation and survival of epidermal monocytes, which, together with the slow rate of renewal of mature LCs, limits repair of the network. Furthermore, replenishment of the LC network leads to constitutive entry of cells into the epidermal compartment. Thus, immune injury triggers functional adaptation of mechanisms used to maintain tissue-resident macrophages at other sites, but this process is highly inefficient in the skin.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: found
          • Article: not found

          CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions.

          The CC chemokine receptor CCR7 has been identified as a key regulator of homeostatic B and T cell trafficking to secondary lymphoid organs. Data presented here demonstrate that CCR7 is also an essential mediator for entry of both dermal and epidermal dendritic cells (DC) into the lymphatic vessels within the dermis while this receptor is dispensable for the mobilization of Langerhans cells from the epidermis to the dermis. Moreover, a distinct population of CD11c(+)MHCII(high) DC showing low expression of the costimulatory molecules CD40, CD80, and CD86 in wild-type animals was virtually absent in skin-draining lymph nodes of CCR7-deficient mice under steady-state conditions. We provide evidence that these cells represent a semimature population of DC that is capable of initiating T cell proliferation under conditions known to induce tolerance. Thus, our data identify CCR7 as a key regulator that governs trafficking of skin DC under both inflammatory and steady-state conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transgenic mice with hematopoietic and lymphoid specific expression of Cre.

            Bacteriophage P1 Cre/loxP based systems can be used to manipulate the genomes ofmice in vivo and in vitro, allowing the generation of tissue-specific conditional mutants. We have generated mouse lines expressing Cre recombinase in hematopoietic tissues using the vav regulatory elements, or in lymphoid cells using the hCD2 promoter and locus control region (LCR). The R26R-EYFP Cre reporter mouse line was used to determine the pattern of Cre expression in each line and enabled the assessment of Cre activity at a single-cell level. Analysis showed that the vav promoter elements were able to direct Cre-mediated recombination in all cells of the hematopoietic system. The hCD2 promoter and LCR on the other hand were able to drive Cre-mediated recombination only in T cells and B cells, but not in other hematopoietic cell types. Furthermore, in the appropriate tissues, deletion of the floxed target was complete in all cells, thereby excluding the possibility of variegated expression of the Cre transgene. Both of these Cre-transgenic lines will be useful in generating tissue-specific gene deletions within all the cells of hematopoietic or lymphoid tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Langerhans cells renew in the skin throughout life under steady-state conditions.

              Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.
                Bookmark

                Author and article information

                Journal
                Science Immunology
                Sci. Immunol.
                American Association for the Advancement of Science (AAAS)
                2470-9468
                August 23 2019
                August 23 2019
                August 23 2019
                August 23 2019
                : 4
                : 38
                : eaax8704
                Article
                10.1126/sciimmunol.aax8704
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article