1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Body composition and mortality in the general population: A review of epidemiologic studies

      1 , 1 , 2 , 3
      Experimental Biology and Medicine
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous studies have examined the association between body mass index and mortality and often observed that risk of mortality was higher in those with lower body mass index than those who were overweight or even obese (“obesity paradox”). One potential explanation of the obesity paradox is the limitation of body mass index as an imperfect measure of adiposity. However, relatively few studies have examined the association between body composition and mortality due to practical issues of assessing body composition in large-scale epidemiological settings. The available epidemiologic studies on this topic were heterogenous with regard to study design, analyses, results, and interpretations. The majority of studies using direct body composition measures such as dual-energy x-ray absorptiometry or computed tomography had relatively small sample size, short follow-up period and restricted study population. Studies have also used other approaches to indirectly estimate body composition to examine the association with mortality in a larger and more representative population. Overall findings were not consistent but suggested that fat mass and lean body mass may play an independent role on mortality in the general population. Various shapes of the associations were observed, but studies generally suggested that high fat mass was associated with increased risk of mortality (especially higher range of fat mass) and low lean body mass was associated with increased risk of mortality (especially lower range of lean body mass). On the other hand, fat mass and lean body mass tended to show either null or inverse association with mortality in elderly populations. Given the complex relationship of two body components as well as with other factors (e.g., age, smoking, disease, etc.), future studies should be conducted and interpreted after careful consideration of potential biases. In summary, the available data suggest independent associations of fat mass and lean body mass on mortality in the general population.

          Impact statement

          Current understanding of the association of body composition on mortality in the general population is limited. This review evaluated the available epidemiologic studies on body composition and mortality that leveraged diverse approaches to estimate body composition. Although studies showed inconsistent results, there was evidence suggesting that high fat mass and low lean body mass may be independently associated with mortality in the general population. This review may help partially explain the “obesity paradox” phenomenon and facilitate further studies to advance the understanding of the association of body composition on health in the general and patient populations.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Association of Muscle and Adiposity Measured by Computed Tomography With Survival in Patients With Nonmetastatic Breast Cancer

          Importance Sarcopenia (low muscle mass), poor muscle quality (low muscle radiodensity), and excess adiposity derived from computed tomography (CT) has been related to higher mortality in patients with metastatic breast cancer, but the association with prognosis in patients with nonmetastatic breast cancer is unknown. Objective To evaluate associations of all 3 body composition measures, derived from clinically acquired CT at diagnosis, with overall mortality in nonmetastatic breast cancer. Design, Setting, and Participants This observational study included 3241 women from Kaiser Permanente of Northern California and Dana Farber Cancer Institute diagnosed from January 2000 to December 2013 with stages II or III breast cancer. We calculated hazard ratios (HRs) to evaluate the associations of all-cause mortality with sarcopenia, low muscle radiodensity, and total adipose tissue (TAT). Models were adjusted for sociodemographics, tumor characteristics, treatment, body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), and other body composition measures. We also evaluated the cross-classification of categories of sarcopenia (yes/no) and tertiles of TAT, with outcomes. Main Outcomes and Measures Overall survival time and all-cause mortality. Results Median (range) age of 3241 women included in this study was 54 (18-80) years, and median follow-up was 6.0 years; 1086 patients (34%) presented with sarcopenia, and 1199 patients (37%) had low muscle radiodensity. Among patients with nonmetastatic breast cancer, those with sarcopenia showed higher overall mortality (HR, 1.41; 95% CI, 1.18-1.69) compared with those without sarcopenia. Patients in the highest tertile of TAT also showed higher overall mortality (HR, 1.35; 95% CI, 1.08-1.69) compared with those in the lowest tertile. Low radiodensity was not associated with survival. In analyses of sarcopenia and TAT, highest mortality was seen in patients with sarcopenia and high TAT (HR, 1.89; 95% CI, 1.30-2.73); BMI alone was not significantly related to overall mortality and did not appropriately identify patients at risk of death owing to their body composition. Conclusions and Relevance Sarcopenia is underrecognized in nonmetastatic breast cancer and occurs in over one-third of newly diagnosed patients. Measures of both sarcopenia and adiposity from clinically acquired CT scans in nonmetastatic patients provide significant prognostic information that outperform BMI and will help to guide interventions to optimize survival outcomes. This observational study examines associations of sarcopenia, muscle radiodensity, and adiposity with overall mortality in nonmetastatic breast cancer. Question Are sarcopenia, poor muscle quality, and excess adiposity at diagnosis associated with overall mortality in patients with nonmetastatic breast cancer? Findings In this observational study of 3241 patients with breast cancer, more than one-third presented with sarcopenia at diagnosis, and those women had a significantly increased risk of death compared with patients without sarcopenia. Poor muscle quality was not associated with survival, and highest mortality was in patients with sarcopenia and high total adipose tissue. Meaning Measures of sarcopenia provide significant prognostic information in nonmetastatic breast cancer and will help to identify high-risk groups and guide interventions to optimize survival outcomes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Skeletal Muscle Strength as a Predictor of All-Cause Mortality in Healthy Men

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Obesity Paradox Does Exist

              Adipose tissue has been shown to be a pivotal organ in the aging process and in the determination of life span. Owing to the rising prevalence of obesity, especially at younger ages, a potential decline in life expectancy is expected in the U.S. in the 21st century. Obesity, and mainly its abdominal form, is considered a major risk factor not only for type 2 diabetes, lipid disorders, and hypertension but also for coronary heart disease and certain cancers. In epidemiological studies, BMI, an indicator of relative weight for height (weight in kilograms divided by the square of height in meters) is frequently used as a surrogate for assessment of excess body fat. For characterization of the relative risks (RRs) of mortality and morbidity, the rates in underweight (BMI 40 kg/m2) are compared with those in normal-weight subjects (18.5 to 40 kg/m2. The manifestation of this obesity paradox was also shown in older patients with coronary artery calcification (8). In 9,993 patients (mean age 66.6 years) with clinically significant coronary lesions who had undergone percutaneous coronary intervention, an inverse relationship between BMI and coronary artery calcification was observed. This finding supports a “calcification paradox,” whereby reduced bone mineral density in the elderly is related to increased vascular calcification (9). Obesity paradox in patients with chronic heart failure Investigations carried out in patients with chronic heart failure show a paradoxical decrease in mortality in those with higher BMI. This observation has been referred to as a “reverse epidemiology” (10). Consequently, several other studies in patients with both chronic and acute heart failure confirmed lower mortality in those with higher BMI (11–16). In the Digitalis Investigation Group Trial, data from 7,767 outpatients with stable heart failure were analyzed after a mean follow-up of 37 months (11). The risk of death was lower for both overweight (RR 0.88) and obese (RR 0.81) patients compared with normal-weight patients. On the other hand, underweight patients (BMI 62 years. Only the Copenhagen City Heart Study evaluated younger patients, with a mean age 56 ± 11 years (31). Aging is associated with a significant decline in energy expenditure and fat oxidation, loss of skeletal muscle mass, and increased muscular lipid infiltration as well as increased visceral fat accumulation. The accumulation of visceral fat in abdominal obesity is associated with low-grade inflammation, blood lipid disorders, and increased risk of developing type 2 diabetes and cardiovascular diseases. Abdominal adiposity is associated with higher mortality; the RR of death among men and women in the highest quintile of waist circumference reached 2.05 in a cohort of 359,387 participants recruited in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and followed over 9.7 years (37). On the other hand, the EPIC study revealed that hip circumference was not significantly associated with the risk of death after adjustment for BMI. These results may evoke the following hypothesis for explaining the obesity paradox: obese patients with risky abdominal obesity die earlier, and thus, among obese in the higher age categories, those with less risky lower-body obesity survive. It should be taken into account that many elderly obese exhibit late-onset obesity and, because of its short duration, health risks and comorbidities have not been able to manifest. No relevant data on the prevalence of less risky (metabolically healthy) obesity in the elderly have been available. In the Cremona Study, however, metabolically healthy, insulin-sensitive subjects represented only 11% of the obese middle-aged population (38). Obese insulin-sensitive subjects had similar BMI but lower waist circumference, blood pressure, fasting glucose, triglycerides, and fibrinogen and higher HDL cholesterol than obese insulin-resistant subjects. Due to the favorable metabolic profile, these subjects, in contrast to insulin-resistant individuals, did not show an increased all-cause, cardiovascular, or cancer mortality in a 15-year follow-up study (38). A review published recently by Mathus-Vliegen and collaborators reported that in the elderly, the prevalence of abdominal obesity defined by waist circumference is higher than the prevalence of obesity defined by BMI (39). However, studies evaluating visceral adipose tissue (VAT) by computed tomography demonstrated that the amount of gained visceral fat decreases with age. A prospective cohort study conducted in nondiabetic Japanese American men and women aged 34–74 years revealed that an accumulation of intra-abdominal fat over 10–11 years was significantly greater (52.1%) at younger ages (34–43 years) compared with older ages (54–63 years: 7.0% increase; ≥64 years: 11.2%) (40). Sex did not affect these associations between adiposity change and age. Similar slopes for these associations between age and adiposity change were demonstrated if Sansei (third generation of immigrants) and Nisei (second generation of immigrants) Japanese were evaluated separately. Data in Japanese American are in line with previously reported data for African Americans and Hispanics aged 20–69 years (41). The rate of increments in the VAT area in these cohorts followed over a 5-year period was greatest in young adulthood and declined with advancing age-group in both men and women, regardless of race. Moreover, except for Hispanic men, a decrease in the VAT area was demonstrated in all cohorts in the oldest age category (60–69 years old). If the rate of accumulation in VAT decreases with age, then the accumulation of peripheral fat stores may predominate and may be responsible for the obesity paradox. It has been shown that large accumulations of subcutaneous fat in the lower body in adults is associated with a lesser likelihood of insulin resistance and type 2 diabetes than when the adipose tissue is centrally distributed in the upper body (42). Lower-body obesity also prevents the progression of carotid atherosclerosis. Not only larger waist circumference (>83 cm) but also smaller hip circumference (≤ 98 cm) was associated with the greatest progression of carotid atherosclerosis quantified by intima-media thickness in a 12-year follow-up study carried out in elderly women aged 60–70 years at baseline (43). Debette et al. (44) found an inverse association of calf circumference with carotid plaques. The calf circumference itself does not differentiate between the fat and muscle mass but is among the strongest correlates of total body skeletal muscle volume and also provides surrogate estimates of both total and subcutaneous body fat but not of visceral fat (45). Thus, the observed protective effect of calf circumference on carotid atherosclerosis may be due either to an enlargement of peripheral fat stores in the lower body obesity or to an increased volume of skeletal muscles. Adipose tissue deposits accumulated in the lower body have relatively high lipoprotein lipase activity and low rates of basal and stimulated lipolysis. These deposits can protect the liver and skeletal muscle from high exposure to free fatty acids and their uptake with subsequent fatty infiltration. Medical treatment Schenkeveld et al. (46) compared medical treatment in patients treated with percutaneous coronary intervention. They found more optimal medical treatment in patients with a high BMI than in those with a normal BMI. This fact may explain a lower mortality in obese patients. However, our clinical experience is that polymorbid obese patients referred to our obesity unit are usually lacking comprehensive medical treatment. Body composition There are several explanations why higher BMI paradoxically improves prognosis in patients with heart failure. Oreopoulos et al. (47) directly measured body composition using dual-energy X-ray absorptiometry in patients with chronic heart failure and revealed that BMI misclassified body fat status in 41% of examined patients. In the cohorts of normal-weight, overweight, and obese patients at mean age of 62–66 years, BMI was a better indicator of lean body mass than of adiposity. Lean body mass but not body fat was associated with favorable changes in prognostic factors such as better handgrip strength and lower NH2-terminal pro–B-type natriuretic peptide, a predictor of mortality among patients with acute and chronic coronary heart disease. Other researchers hypothesized that a decreased BMI could be a surrogate of the “malnutrition-inflammation complex syndrome” that may cause a worse prognosis in patients with chronic heart failure as well as in patients in maintenance dialysis (10). Enlarged muscle mass and better nutritional status The obesity paradox may be partly explained by the lack of the discriminatory power of BMI to differentiate between lean body mass and fat mass. Higher mortality in the low BMI categories may be due to the sarcopenic obesity that is characterized by low muscle mass (48). Sacropenia exacerbates insulin resistance and dysglycemia in both nonobese and obese individuals. Many obese patients demonstrate not only increased fat mass but also increased muscle mass. Elderly patients with heart failure, who exhibited high BMI and had improved survival, had a better nutritional status than those with lower BMI (49). BMI and triceps skinfold thickness did not predict mortality, while a larger mid-arm muscle area, as a protective factor, did. A composite measure of mid-arm muscle mass and waist circumference was proposed as the most effective predictor of mortality in older men (50). Men aged 60–79 years with low waist circumference (≤102 cm) and above-median muscle mass demonstrated the lowest mortality rate. Cardiorespiratory fitness During recent decades, many studies provided evidence that obese subjects with an increased cardiorespiratory fitness have lower all-cause mortality and lower risk of cardiovascular and metabolic diseases and certain cancers (51). Thus, the obesity paradox may be partly explained by the level of cardiorespiratory fitness. Cardiorespiratory fitness may result in a healthy obesity that suppresses metabolic consequences of aging and is therefore associated with a better life expectancy. It has recently been shown that in men with known or suspected coronary heart disease, cardiorespiratory fitness greatly modified the relation of adiposity to cardiovascular and all-cause mortality (52). Increased muscle strength Muscle mass need not reflect muscle function, which largely differs and is dependent on the size, number, and contractility of fibers; fat infiltration; collagen content; etc. (48). Recent studies emphasize that a major factor influencing the mortality risk is not muscle mass but muscle strength as a marker of muscle quality (48,52). Muscle strength is negatively associated with metabolic risks independent of cardiorespiratory fitness. Grip strength is easily measured with isometric dynamometry. Grip strength provides risk estimates similar to those of quadriceps strength that is measured with isokinetic dynamometry (53). Handgrip strength has been recommended as a predictor of prognosis in patients with congestive heart failure in Japan (54). Thus, greater handgrip strength, reflecting better nutrition and physical fitness in some obese patients, may be a simple marker of a better outcome of congestive heart failure. Endothelial progenitor cells Less coronary atherosclerosis demonstrated in autopsies of severely obese subjects is another example of the obesity paradox (55). Biasucci and collaborators reported paradoxical preservation of vascular function in severely obese individuals (56). In these patients, both the higher flow-mediated dilation and the lower intima-media thickness were observed in comparison with obese and normal-weight subjects. The authors hypothesized that severely obese patients, despite higher levels of C-reactive protein and leptin, may be partially protected from atherogenesis through a greater mobilization of endothelial progenitor cells. A reduction of circulating bone marrow–derived endothelial progenitor cells has been proposed as a novel mechanism of vascular disease in type 2 diabetes (57). A greater mobilization of endothelial progenitor cells may protect severely obese patients from the development of diabetic vasculopathy. Thromboxane production Cardiovascular protection of severely obese subjects may also be mediated by a decreased production of thromboxane (58). Thromboxane A2 represents a marker of platelet activation that substantially contributes to increased cardiovascular morbidity and mortality. Levels of thromboxane B2, a stable metabolite of thromboxane A2, were lower in morbidly obese subjects than in lean and obese subjects (58). Thromboxane B2 negatively correlated with BMI and leptin. Graziani suggested that the decreased thromboxane production in severely obese subjects may be due to the resistance to proaggregatory action of leptin (58). However, the decreased thromboxane production in the severely obese may also be influenced by their paradoxically better endothelial function compared with obese and lean individuals (56). Ghrelin sensitivity Ghrelin is a gastric peptide hormone, initially described as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin stimulates growth hormone release and food intake, promotes positive energy balance/weight gain, and improves cardiac contractility (59). Ghrelin receptors have been found in both heart and blood vessels. The administration of ghrelin improved left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. A recently described positive association of plasma acylated ghrelin with blood pressure and left ventricular mass may represent a compensatory mechanism to overcome the development of heart failure in patients with metabolic syndrome (60). Lund et al. (61) suggested a role of ghrelin resistance in the development of cardiac cachexia. They demonstrated an association of heart failure with resistance to the appetite-stimulating effects of ghrelin. Resolved ghrelin sensitivity after heart transplantation resulted in an increase in caloric intake and weight gain (9.6 ± 6.2 kg) accompanied by a decline in ghrelin levels (61). We hypothesize that appropriate ghrelin sensitivity in the hypothalamus and myocardium associated with increased caloric intake and weight gain may be a protective factor against both heart failure and cardiac cachexia and thus could contribute to explanation of the obesity paradox in patients with heart failure. Soluble tumor necrosis factor receptor An increased production of inflammatory cytokines as tumor necrosis factor (TNF)-α plays an important role in the development of cardiometabolic risks in obese patients. The healthy heart does not express TNF, while the failing heart produces enormous quantities of TNF. Among patients with heart failure, obese subjects exhibit lower concentrations of TNF (62). Lower concentrations of TNF-α may cause a better outcome in obese patients with heart failure. Decreased TNF levels in obese patients with heart failure are related to the production of soluble TNF receptor by subcutaneous adipose tissue. It is assumed that these receptors bind TNF-α and neutralize its adverse effects on the myocardium. Venous concentrations of both isoforms of soluble TNF receptor, I and II, significantly correlate with BMI and percent body fat. On the other hand, no relationship between TNF-α and adiposity indexes has been demonstrated. Conclusions Despite the fact that obesity is recognized as a major risk factor in the development of cardiovascular diseases and diabetes, a higher BMI may be associated with a lower mortality and a better outcome in several chronic diseases and health circumstances. This protective effect of obesity has been described as the “obesity paradox” or “reverse epidemiology.” However, it should be emphasized that the BMI is a crude and flawed anthropometric biomarker that does not take into account fat mass/fat-free mass ratio, nutritional status, cardiorespiratory fitness, body fat distribution, or other factors affecting health risks and the patient’s mortality (63). This review summarizes manifestations of the obesity paradox in different diseases such as coronary heart disease, heart failure, hypertension, peripheral artery disease, stroke, thromboembolism, kidney and pulmonary diseases, and type 2 diabetes. Obese individuals may also demonstrate better outcome in response to certain therapeutic procedures. The obesity paradox was mostly reported in elderly. Therefore, the protective effect of nutritional status in overweight and obese elderly individuals and the health-deteriorating effect of undernutrition in nonoverweight subjects probably contribute to this paradox. Besides the age and nutritional status, other factors such as less risky lower-body obesity, favorable body composition, and cardiorespiratory fitness are discussed as potential contributors to the obesity paradox. We may discuss the appropriateness of this term rather than its existence. A more relevant term that reflects individual health protective agent/s in each specific condition should be considered. Nevertheless, the discussion over the existence of the obesity paradox cannot lead to an underestimation of obesity as a crucial risk factor for the development of cardiovascular and metabolic diseases that requires comprehensive prevention and management strategies.
                Bookmark

                Author and article information

                Journal
                Experimental Biology and Medicine
                Exp Biol Med (Maywood)
                SAGE Publications
                1535-3702
                1535-3699
                December 2018
                December 11 2018
                December 2018
                : 243
                : 17-18
                : 1275-1285
                Affiliations
                [1 ]Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
                [2 ]Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
                [3 ]Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
                Article
                10.1177/1535370218818161
                6348595
                30537867
                78a5276b-bdef-4946-accb-731551680abb
                © 2018

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article