5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Retrospective analysis of fish community change during a half-century of landuse and streamflow changes

      , ,
      Journal of the North American Benthological Society
      Society for Freshwater Science

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          The Natural Flow Regime

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity.

            The flow regime is regarded by many aquatic ecologists to be the key driver of river and floodplain wetland ecosystems. We have focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes: Firstly, flow is a major determinant of physical habitat in streams, which in turn is a major determinant of biotic composition; Secondly, aquatic species have evolved life history strategies primarily in direct response to the natural flow regimes; Thirdly, maintenance of natural patterns of longitudinal and lateral connectivity is essential to the viability of populations of many riverine species; Finally, the invasion and success of exotic and introduced species in rivers is facilitated by the alteration of flow regimes. The impacts of flow change are manifest across broad taxonomic groups including riverine plants, invertebrates, and fish. Despite growing recognition of these relationships, ecologists still struggle to predict and quantify biotic responses to altered flow regimes. One obvious difficulty is the ability to distinguish the direct effects of modified flow regimes from impacts associated with land-use change that often accompanies water resource development. Currently, evidence about how rivers function in relation to flow regime and the flows that aquatic organisms need exists largely as a series of untested hypotheses. To overcome these problems, aquatic science needs to move quickly into a manipulative or experimental phase, preferably with the aims of restoration and measuring ecosystem response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptation to natural flow regimes.

              Floods and droughts are important features of most running water ecosystems, but the alteration of natural flow regimes by recent human activities, such as dam building, raises questions related to both evolution and conservation. Among organisms inhabiting running waters, what adaptations exist for surviving floods and droughts? How will the alteration of the frequency, timing and duration of flow extremes affect flood- and drought-adapted organisms? How rapidly can populations evolve in response to altered flow regimes? Here, we identify three modes of adaptation (life history, behavioral and morphological) that plants and animals use to survive floods and/or droughts. The mode of adaptation that an organism has determines its vulnerability to different kinds of flow regime alteration. The rate of evolution in response to flow regime alteration remains an open question. Because humans have now altered the flow regimes of most rivers and many streams, understanding the link between fitness and flow regime is crucial for the effective management and restoration of running water ecosystems.
                Bookmark

                Author and article information

                Journal
                Journal of the North American Benthological Society
                Journal of the North American Benthological Society
                Society for Freshwater Science
                0887-3593
                1937-237X
                September 2010
                September 2010
                : 29
                : 3
                : 970-987
                Article
                10.1899/09-116.1
                78a5e8d5-a968-4753-a933-cc52261aceb2
                © 2010
                History

                Comments

                Comment on this article