159
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The elementary unit of store-operated Ca 2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The activation of store-operated Ca 2+ entry by Ca 2+ store depletion has long been hypothesized to occur via local interactions of the endoplasmic reticulum (ER) and plasma membrane, but the structure involved has never been identified. Store depletion causes the ER Ca 2+ sensor stromal interacting molecule 1 (STIM1) to form puncta by accumulating in junctional ER located 10–25 nm from the plasma membrane (see Wu et al. on p. [Related article:]803 of this issue). We have combined total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording to localize STIM1 and sites of Ca 2+ influx through open Ca 2+ release–activated Ca 2+ (CRAC) channels in Jurkat T cells after store depletion. CRAC channels open only in the immediate vicinity of STIM1 puncta, restricting Ca 2+ entry to discrete sites comprising a small fraction of the cell surface. Orai1, an essential component of the CRAC channel, colocalizes with STIM1 after store depletion, providing a physical basis for the local activation of Ca 2+ influx. These studies reveal for the first time that STIM1 and Orai1 move in a coordinated fashion to form closely apposed clusters in the ER and plasma membranes, thereby creating the elementary unit of store-operated Ca 2+ entry.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function.

          Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (I(CRAC)). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx.

            Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Store-operated calcium channels.

              In electrically nonexcitable cells, Ca(2+) influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca(2+) entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca(2+) stores activates Ca(2+) influx (store-operated Ca(2+) entry, or capacitative Ca(2+) entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca(2+) release-activated Ca(2+) current, I(CRAC). Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for I(CRAC)-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca(2+) content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca(2+) sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca(2+) entry. Recent work has revealed a central role for mitochondria in the regulation of I(CRAC), and this is particularly prominent under physiological conditions. I(CRAC) therefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of I(CRAC) and other store-operated Ca(2+) currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca(2+) entry pathway.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                JCB
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                11 September 2006
                : 174
                : 6
                : 815-825
                Affiliations
                Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
                Author notes

                Correspondence to Richard S. Lewis: rslewis@ 123456stanford.edu

                Article
                200604015
                10.1083/jcb.200604015
                2064336
                16966423
                78aebf38-8f0d-4b76-9155-461a5f5e3b86
                Copyright © 2006, The Rockefeller University Press
                History
                : 5 April 2006
                : 14 August 2006
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article