30
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anticancer and Anti-Inflammatory Activities of a Standardized Dichloromethane Extract from Piper umbellatum L. Leaves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the advances in anticancer drug discovery field, the worldwide cancer incidence is remarkable, highlighting the need for new therapies focusing on both cancer cell and its microenvironment. The tumor microenvironment offers multiple targets for cancer therapy, including inflammation. Nowadays, almost 75% of the anticancer agents used in chemotherapy are derived from natural products, and plants are an important source of new promising therapies. Continuing our research on Piper umbellatum species, here we describe the anticancer ( in vitro antiproliferative activity and in vivo Ehrlich solid tumor model) and anti-inflammatory (carrageenan-induced paw edema and peritonitis models) activities of a standardized dichloromethane extract (SDE) from P. umbellatum leaves, containing 23.9% of 4-nerolidylcatechol. SDE showed in vitro and in vivo antiproliferative activity, reducing Ehrlich solid tumor growth by 38.7 and 52.2% when doses of 200 and 400 mg/kg, respectively, were administered daily by oral route. Daily treatments did not produce signals of toxicity. SDE also reduced paw edema and leukocyte migration on carrageenan-induced inflammation models, suggesting that the anticancer activity of SDE from Piper umbellatum leaves could involve antiproliferative and anti-inflammatory effects. These findings highlight P. umbellatum as a source of compounds against cancer and inflammation.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The NCI60 human tumour cell line anticancer drug screen.

          The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug resistance and the solid tumor microenvironment.

            Resistance of human tumors to anticancer drugs is most often ascribed to gene mutations, gene amplification, or epigenetic changes that influence the uptake, metabolism, or export of drugs from single cells. Another important yet little-appreciated cause of anticancer drug resistance is the limited ability of drugs to penetrate tumor tissue and to reach all of the tumor cells in a potentially lethal concentration. To reach all viable cells in the tumor, anticancer drugs must be delivered efficiently through the tumor vasculature, cross the vessel wall, and traverse the tumor tissue. In addition, heterogeneity within the tumor microenvironment leads to marked gradients in the rate of cell proliferation and to regions of hypoxia and acidity, all of which can influence the sensitivity of the tumor cells to drug treatment. In this review, we describe how the tumor microenvironment may be involved in the resistance of solid tumors to chemotherapy and discuss potential strategies to improve the effectiveness of drug treatment by modifying factors relating to the tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

              We describe here the development and implementation of a pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system. The ultimate goal of this disease-oriented screen is to facilitate the discovery of new compounds with potential cell line-specific and/or subpanel-specific antitumor activity. In the current screening protocol, each cell line is inoculated onto microtiter plates, then preincubated for 24-28 hours. Subsequently, test agents are added in five 10-fold dilutions and the culture is incubated for an additional 48 hours. For each test agent, a dose-response profile is generated. End-point determinations of the cell viability or cell growth are performed by in situ fixation of cells, followed by staining with a protein-binding dye, sulforhodamine B (SRB). The SRB binds to the basic amino acids of cellular macromolecules; the solubilized stain is measured spectrophotometrically to determine relative cell growth or viability in treated and untreated cells. Following the pilot screening studies, a screening rate of 400 compounds per week has been consistently achieved.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2015
                3 February 2015
                3 February 2015
                : 2015
                : 948737
                Affiliations
                1Department of Pharmacology, Anaesthesiology and Therapeutics, Faculty of Dentistry, University of Campinas, Avenida Limeira 901, 13414-903 Piracicaba, SP, Brazil
                2Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Rua Alexandre Cazelatto 999, Vila Betel, 13148-218 Paulínia, SP, Brazil
                3Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Cidade Universitária Zeferino Vaz, Barão Geraldo, 13081-970 Campinas, SP, Brazil
                4Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, 13081-970 Campinas, SP, Brazil
                Author notes
                *Débora Barbosa Vendramini-Costa: vendramini.debora@ 123456gmail.com

                Academic Editor: Youn C. Kim

                Article
                10.1155/2015/948737
                4332971
                78b3087b-2f8d-4b1e-8cd2-959d22217913
                Copyright © 2015 Leilane Hespporte Iwamoto et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 November 2014
                : 13 January 2015
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article