Advances in technology have fundamentally changed how information is produced and consumed by all actors involved in tourism. Tourists can now access different sources of information, and they can generate their own content and share their views and experiences. Tourism content shared through social media has become a very influential information source that impacts tourism in terms of both reputation and performance. However, the volume of data on the Internet has reached a level that makes manual processing almost impossible, demanding new analytical approaches. Sentiment analysis is rapidly emerging as an automated process of examining semantic relationships and meaning in reviews. In this article, different sentiment analysis approaches applied in tourism are reviewed and assessed in terms of the datasets used and performances on key evaluation metrics. The article concludes by outlining future research avenues to further advance sentiment analysis in tourism as part of a broader Big Data approach.