53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Drosophila Genome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcriptional regulation is one of the most important processes for modulating gene expression. Though much of this control is attributed to transcription factors, histones, and associated enzymes, it is increasingly apparent that the spatial organization of chromosomes within the nucleus has a profound effect on transcriptional activity. Studies in yeast indicate that the nuclear pore complex might promote transcription by recruiting chromatin to the nuclear periphery. In higher eukaryotes, however, it is not known whether such regulation has global significance. Here we establish nucleoporins as a major class of global regulators for gene expression in Drosophila melanogaster. Using chromatin-immunoprecipitation combined with microarray hybridisation, we show that Nup153 and Megator (Mtor) bind to 25% of the genome in continuous domains extending 10 kb to 500 kb. These Nucleoporin-Associated Regions (NARs) are dominated by markers for active transcription, including high RNA polymerase II occupancy and histone H4K16 acetylation. RNAi–mediated knock-down of Nup153 alters the expression of ∼5,700 genes, with a pronounced down-regulatory effect within NARs. We find that nucleoporins play a central role in coordinating dosage compensation—an organism-wide process involving the doubling of expression of the male X chromosome. NARs are enriched on the male X chromosome and occupy 75% of this chromosome. Furthermore, Nup153-depletion abolishes the normal function of the male-specific dosage compensation complex. Finally, by extensive 3D imaging, we demonstrate that NARs contribute to gene expression control irrespective of their sub-nuclear localization. Therefore, we suggest that NAR–binding is used for chromosomal organization that enables gene expression control.

          Author Summary

          The eukaryotic genome is spatially distributed in a highly organized manner, with chromosomal regions localizing to well-defined sub-nuclear positions. This organization could have a profound effect on chromatin accessibility and transcriptional activity on a genome-wide level. Using high-resolution, genome-wide, chromatin-binding profiles we show that the nuclear pore components Nup153 and Megator bind to quarter of the Drosophila genome in form of chromosomal domains. These domains represent active regions of the genome. Interestingly, comparison of male and female cells revealed enrichment of these domains on the male X chromosome, which represents an exceptionally active chromosome that is under dosage compensation control to equalize gene expression due to differences in X chromosome number between males and females. Based on extensive 3D image analysis, we show that these chromosomal domains are contributed by both peripheral as well as intranuclear pool of these proteins. We suggest that chromosomal organization by nucleoporins could contribute to global gene expression control.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of chromatin remodeling complexes.

          The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Active genes dynamically colocalize to shared sites of ongoing transcription.

            The intranuclear position of many genes has been correlated with their activity state, suggesting that migration to functional subcompartments may influence gene expression. Indeed, nascent RNA production and RNA polymerase II seem to be localized into discrete foci or 'transcription factories'. Current estimates from cultured cells indicate that multiple genes could occupy the same factory, although this has not yet been observed. Here we show that, during transcription in vivo, distal genes colocalize to the same transcription factory at high frequencies. Active genes are dynamically organized into shared nuclear subcompartments, and movement into or out of these factories results in activation or abatement of transcription. Thus, rather than recruiting and assembling transcription complexes, active genes migrate to preassembled transcription sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF.

              Proteins interact with genomic DNA to bring the genome to life; and these interactions also define many functional features of the genome. SBF and MBF are sequence-specific transcription factors that activate gene expression during the G1/S transition of the cell cycle in yeast. SBF is a heterodimer of Swi4 and Swi6, and MBF is a heterodimer of Mbpl and Swi6 (refs 1, 3). The related Swi4 and Mbp1 proteins are the DNA-binding components of the respective factors, and Swi6 mayhave a regulatory function. A small number of SBF and MBF target genes have been identified. Here we define the genomic binding sites of the SBF and MBF transcription factors in vivo, by using DNA microarrays. In addition to the previously characterized targets, we have identified about 200 new putative targets. Our results support the hypothesis that SBF activated genes are predominantly involved in budding, and in membrane and cell-wall biosynthesis, whereas DNA replication and repair are the dominant functions among MBF activated genes. The functional specialization of these factors may provide a mechanism for independent regulation of distinct molecular processes that normally occur in synchrony during the mitotic cell cycle.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2010
                February 2010
                12 February 2010
                : 6
                : 2
                : e1000846
                Affiliations
                [1 ]European Bioinformatics Institute, Cambridge, United Kingdom
                [2 ]Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
                [3 ]Centre for Molecular and Cellular Imaging, European Molecular Biology Laboratory, Heidelberg, Germany
                [4 ]Laboratory of Chromatin Regulation, Max Planck Institute of Immunobiology, Freiburg, Germany
                The Babraham Institute, United Kingdom
                Author notes

                Conceived and designed the experiments: NML AA. Performed the experiments: JMV RS JK. Analyzed the data: JMV RS JK KM NML AA. Contributed reagents/materials/analysis tools: JMV RS JK KM NML AA. Wrote the paper: NML AA.

                ¶ These authors are joint senior authors on this work.

                Article
                09-PLGE-RA-1964R2
                10.1371/journal.pgen.1000846
                2820533
                20174442
                78be1bbc-f664-431d-8718-c04d7e3575e2
                Vaquerizas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 November 2009
                : 14 January 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Biochemistry/Bioinformatics
                Biochemistry/Transcription and Translation
                Cell Biology/Nuclear Structure and Function
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Chromosome Biology
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Functional Genomics
                Genetics and Genomics/Genomics
                Genetics and Genomics/Nuclear Structure and Function
                Molecular Biology/Chromatin Structure
                Molecular Biology/Histone Modification
                Molecular Biology/Transcription Initiation and Activation

                Genetics
                Genetics

                Comments

                Comment on this article