29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The direct response of the gonads to cues of stress in a temperate songbird species is season-dependent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gonadotropin releasing hormone (GnRH) system in the hypothalamus is often considered the final point in integration of environmental cues as they pertain to the reproductive axis. However, cues such as stress and food availability are detectable in the plasma (as glucocorticoid and metabolic fuel fluctuations). Vertebrate gonads express glucocorticoid receptor, therefore we hypothesized that the gonads can detect and respond directly to cues of stress. We provide evidence here that, in addition to regulation by the brain, the gonads of European starlings ( Sturnus vulgaris) respond directly to fluctuations in corticosterone and metabolic fuels by modulating sex steroid secretion. Using a 4-h gonad culture, we show that physiologically-relevant concentrations of corticosterone and metabolic stress (via use of the glucose utilization inhibitor 2-deoxy-D-glucose and the fatty acid oxidation inhibitor ethyl 2-mercaptoacetate (2DG/MA)) can directly decrease testosterone and estradiol secretion from luteinizing hormone and follicle-stimulating hormone (LH/FSH)-stimulated testes and ovaries. This effect is regulated seasonally. Prior to the breeding season, testes and ovaries respond to corticosterone and 2DG/MA by significantly decreasing gonadal steroid release. Within the breeding season, the testes do not respond to these cues of stress, while the ovaries respond only to corticosterone. This seasonal difference in response may be due in part to the influence of these cues of stress on gonadal neuropeptide expression: corticosterone upregulates GnIH expression in the testes while metabolic stress upregulates GnIH in the ovaries. Thus the gonads can directly respond to fluctuations in corticosterone and metabolic fuels during a time of critical importance to the onset of breeding.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates.

          The vertebrate stress response helps animals respond to environmental dangers such as predators or storms. An important component of the stress response is glucocorticoid (GC) release, resulting from activation of the hypothalamic-pituitary-adrenal axis. After release, GCs induce a variety of behavioral and physiological changes that presumably help the animal respond appropriately to the situation. Consequently, GC secretion is often considered an obligatory response to stressful situations. Evidence now indicates, however, that free-living species from many taxa can seasonally modulate GC release. In other words, the magnitudes of both unstressed and stressed GC concentrations change depending upon the time of year. This review examines the growing evidence that GC concentrations in free-living reptiles, amphibians, and birds, but not mammals, are commonly elevated during the breeding season. This evidence is then used to test three hypotheses with different focuses on GC's energetic or behavioral effects, as well as on GC's role in preparing the animal for subsequent stressors. These hypotheses attempt to place annual GC rhythms into a physiological or behavioral context. Integrating seasonal differences in GC concentrations with either different physiological states or different life history stages provides clues to a new understanding of how GCs actually help in survival during stress. Consequently, understanding seasonal modulation of GC release has far-reaching importance for both the physiology of the stress response and the short-term survival of individual animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reproduction and resistance to stress: when and how.

            Environmental and social stresses have deleterious effects on reproductive function in vertebrates. Global climate change, human disturbance and endocrine disruption from pollutants are increasingly likely to pose additional stresses that could have a major impact on human society. Nonetheless, some populations of vertebrates (from fish to mammals) are able to temporarily resist environmental and social stresses, and breed successfully. A classical trade-off of reproductive success for potential survival is involved. We define five examples. (i) Aged individuals with minimal future reproductive success that should attempt to breed despite potential acute stressors. (ii) Seasonal breeders when time for actual breeding is so short that acute stress should be resisted in favour of reproductive success. (iii) If both members of a breeding pair provide parental care, then loss of a mate should be compensated for by the remaining individual. (iv) Semelparous species in which there is only one breeding period followed by programmed death. (v) Species where, because of the transience of dominance status in a social group, individuals may only have a short window of opportunity for mating. We suggest four mechanisms underlying resistance of the gonadal axis to stress. (i) Blockade at the central nervous system level, i.e. an individual no longer perceives the perturbation as stressful. (ii) Blockade at the level of the hypothalamic-pituitary-adrenal axis (i.e. failure to increase secretion of glucocorticosteroids). (iii) Blockade at the level of the hypothalamic-pituitary-gonad axis (i.e. resistance of the reproductive system to the actions of glucocorticosteroids). (iv) Compensatory stimulation of the gonadal axis to counteract inhibitory glucocorticosteroid actions. Although these mechanisms are likely genetically determined, their expression may depend upon a complex interaction with environmental factors. Future research will provide valuable information on the biology of stress and how organisms cope. Such mechanisms would be particularly insightful as the spectre of global change continues to unfold.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel avian hypothalamic peptide inhibiting gonadotropin release.

              The neuropeptide control of gonadotropin secretion at the level of the anterior pituitary gland is primarily through the stimulatory action of the hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), which was originally isolated from mammals and subsequently from non-mammals. To date, however, an inhibitory peptide of gonadotropin release is unknown in vertebrates. Here we show, in a bird, that the hypothalamus also contains a novel peptide which inhibits gonadotropin release. Acetic acid extracts of quail brains were passed through C-18 reversed-phase cartridges, and then the retained material was subjected to the reversed-phase and cation-exchange high-performance liquid chromatography (HPLC). The peptide was isolated from avian brain and shown to have the sequence Ser-Ile-Lys-Pro-Ser-Ala-Tyr-Leu-Pro-Leu-Arg-Phe-NH(2). Cell bodies and terminals containing this peptide were localized immunohistochemically in the paraventricular nucleus and median eminence, respectively. This peptide inhibited, in a dose-related way, gonadotropin release from cultured quail anterior pituitaries. This is the first hypothalamic peptide inhibiting gonadotropin release reported in a vertebrate. We therefore term it gonadotropin-inhibitory hormone (GnIH). Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                15 August 2013
                2013
                : 1
                : e139
                Affiliations
                [1 ]Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology , University of California at Berkeley, USA
                [2 ]Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley , CA, USA
                Article
                139
                10.7717/peerj.139
                3746958
                24024084
                78bfd190-9a4c-4988-a9da-ecc9c369172e
                © 2013 McGuire et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 November 2012
                : 31 July 2013
                Funding
                Funded by: NSF IOS
                Award ID: 0641188
                Award ID: 0956338
                Award ID: 1122044
                Funded by: NSF GRFP
                This work was supported by grants from NSF IOS 0641188, 0956338 and 1122044 to George E. Bentley and NSF Graduate Research Fellowship Program (NLM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Ecology
                Zoology
                Diabetes and Endocrinology

                stress,gonadotropin inhibitory hormone (gnih),corticosterone,gonadotropin releasing hormone (gnrh),testes,estradiol,testosterone,avian,supplementary cues,photoperiod,ovary

                Comments

                Comment on this article