51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and Their Prey on Coral Reefs of the Mexican Caribbean

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference database (BOLD).

          Methodology/Principal Findings

          We confirm with barcoding that only Pterois volitans is apparently present in the Mexican Caribbean. We analyzed the stomach contents of 157 specimens of P. volitans from various locations in the region. Based on DNA matches in the Barcode of Life Database (BOLD) and GenBank, we identified fishes from five orders, 14 families, 22 genera and 34 species in the stomach contents. The families with the most species represented were Gobiidae and Apogonidae. Some prey taxa are commercially important species. Seven species were new records for the Mexican Caribbean: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus, Starksia langi and S. ocellata. DNA matches, as well as the presence of intact lionfish in the stomach contents, indicate some degree of cannibalism, a behavior confirmed in this species by the first time. We obtained 45 distinct crustacean prey sequences, from which only 20 taxa could be identified from the BOLD and GenBank databases. The matches were primarily to Decapoda but only a single taxon could be identified to the species level, Euphausia americana.

          Conclusions/Significance

          This technique proved to be an efficient and useful method, especially since prey species could be identified from partially-digested remains. The primary limitation is the lack of comprehensive coverage of potential prey species in the region in the BOLD and GenBank databases, especially among invertebrates.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A universal DNA mini-barcode for biodiversity analysis

            Background The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome c oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed). Results We used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens. Conclusion In this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical factors for assembling a high volume of DNA barcodes.

              Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                1 June 2012
                : 7
                : 6
                : e36636
                Affiliations
                [1 ]El Colegio de la Frontera Sur, Unidad Chetumal, Quintana Roo, Mexico
                [2 ]Parque Nacional Arrecifes de Cozumel, Comisión Nacional de Áreas Naturales Protegidas, Chetumal, Quintana Roo, Mexico
                [3 ]Reserva de la Bisofera Banco Chinchorro, Parque Nacional Arrecifes de Xcalak Comisión Nacional de Áreas Naturales Protegidas, Chetumal, Quintana Roo, Mexico
                Smithsonian’s National Zoological Park, United States of America
                Author notes

                Conceived and designed the experiments: MVM. Performed the experiments: MVM CQL. Analyzed the data: MVM CQL. Contributed reagents/materials/analysis tools: CQL RGL MCGR. Wrote the paper: MVM CQL RGL MCGR.

                Article
                PONE-D-12-00624
                10.1371/journal.pone.0036636
                3365883
                22675470
                78c5863c-ad10-422e-ad2f-8f2f811f6714
                Valdez-Moreno et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 January 2012
                : 4 April 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Ecology
                Marine Ecology
                Coral Reefs
                Biodiversity
                Environmental Protection
                Genetics
                Animal Genetics
                Marine Biology
                Marine Conservation
                Population Biology
                Population Dynamics
                Predator-Prey Dynamics
                Zoology
                Animal Taxonomy
                Ichthyology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article