20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uncovering the Mechanism of Astragalus membranaceus in the Treatment of Diabetic Nephropathy Based on Network Pharmacology

      research-article
      1 , 2 , , 3 , 1
      Journal of Diabetes Research
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetic nephropathy (DN), characterized by hyperglycemia, hypertension, proteinuria, and edema, is a unique microvascular complication of diabetes. Traditional Chinese medicine (TCM) Astragalus membranaceus (AM) has been widely used for DN in China while the pharmacological mechanisms are still unclear. This work is aimed at undertaking a network pharmacology analysis to reveal the mechanism of the effects of AM in DN. Materials and Methods. In this study, chemical constituents of AM were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and the potential targets of AM were identified using the Therapeutic Target Database (TTD). DisGeNET and GeneCards databases were used to collect DN-related target genes. DN-AM common target protein interaction network was established by using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to further explore the DN mechanism and therapeutic effect of AM. The network diagrams of the active component-action target and protein-protein interaction (PPI) networks were constructed using Cytoscape software.

          Results

          A total of 16 active ingredients contained and 78 putative identified target genes were screened from AM, of which 42 overlapped with the targets of DN and were considered potential therapeutic targets. The analysis of the network results showed that the AM activity of component quercetin, formononetin, calycosin, 7-O-methylisomucronulatol, and quercetin have a good binding activity with top ten screened targets, such as VEGFA, TNF, IL-6, MAPK, CCL3, NOS3, PTGS2, IL-1 β, JUN, and EGFR. GO and KEGG analyses revealed that these targets were associated with inflammatory response, angiogenesis, oxidative stress reaction, rheumatoid arthritis, and other biological process.

          Conclusions

          This study demonstrated the multicomponent, multitarget, and multichannel characteristics of AM, which provided a novel approach for further research of the mechanism of AM in the treatment of DN.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy

          Diabetic nephropathy (DN) together with glomerular hyperfiltration has been implicated in the development of diabetic microangiopathy in the initial stage of diabetic diseases. Increased amounts of urinary protein in DN may be associated with functional and morphological alterations of podocyte, mainly including podocyte hypertrophy, epithelial-mesenchymal transdifferentiation (EMT), podocyte detachment, and podocyte apoptosis. Accumulating studies have revealed that disruption in multiple renal signaling pathways had been critical in the progression of these pathological damages, such as adenosine monophosphate-activated kinase signaling pathways (AMPK), wnt/β-catenin signaling pathways, endoplasmic reticulum stress-related signaling pathways, mammalian target of rapamycin (mTOR)/autophagy pathway, and Rho GTPases. In this review, we highlight new molecular insights underlying podocyte injury in the progression of DN, which offer new therapeutic targets to develop important renoprotective treatments for DN over the next decade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis

            Background: The molecular mechanism of tumorigenesis remains to be fully understood in breast cancer. It is urgently required to identify genes that are associated with breast cancer development and prognosis and to elucidate the underlying molecular mechanisms. In the present study, we aimed to identify potential pathogenic and prognostic differentially expressed genes (DEGs) in breast adenocarcinoma through bioinformatic analysis of public datasets. Methods: Four datasets (GSE21422, GSE29431, GSE42568, and GSE61304) from Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) dataset were used for the bioinformatic analysis. DEGs were identified using LIMMA Package of R. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were conducted through FunRich. The protein-protein interaction (PPI) network of the DEGs was established through STRING (Search Tool for the Retrieval of Interacting Genes database) website, visualized by Cytoscape and further analyzed by Molecular Complex Detection (MCODE). UALCAN and Kaplan–Meier (KM) plotter were employed to analyze the expression levels and prognostic values of hub genes. The expression levels of the hub genes were also validated in clinical samples from breast cancer patients. In addition, the gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Results: In total, 203 up-regulated and 118 down-regulated DEGs were identified. Mitotic cell cycle and epithelial-to-mesenchymal transition pathway were the major enriched pathways for the up-regulated and down-regulated genes, respectively. The PPI network was constructed with 314 nodes and 1,810 interactions, and two significant modules are selected. The most significant enriched pathway in module 1 was the mitotic cell cycle. Moreover, six hub genes were selected and validated in clinical sample for further analysis owing to the high degree of connectivity, including CDK1, CCNA2, TOP2A, CCNB1, KIF11, and MELK, and they were all correlated to worse overall survival (OS) in breast cancer. Conclusion: These results revealed that mitotic cell cycle and epithelial-to-mesenchymal transition pathway could be potential pathways accounting for the progression in breast cancer, and CDK1, CCNA2, TOP2A, CCNB1, KIF11, and MELK may be potential crucial genes. Further, it could be utilized as new biomarkers for prognosis and potential new targets for drug synthesis of breast cancer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Targeting inflammation in diabetic nephropathy: a tale of hope

                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2020
                2 March 2020
                : 2020
                : 5947304
                Affiliations
                1Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, China
                2Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230041, China
                3Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
                Author notes

                Academic Editor: Ilaria Campesi

                Author information
                https://orcid.org/0000-0003-1795-1016
                https://orcid.org/0000-0002-7321-4777
                Article
                10.1155/2020/5947304
                7079250
                32215271
                78c832a3-653d-4e85-a35e-a4ae7c4b4b05
                Copyright © 2020 Ming-Fei Guo et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 September 2019
                : 15 January 2020
                : 6 February 2020
                Funding
                Funded by: State Administration of Traditional Chinese Medicine of the People's Republic of China
                Award ID: JDZX2015126
                Funded by: National Natural Science Foundation of China
                Award ID: 81973546
                Categories
                Research Article

                Comments

                Comment on this article