21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zinc-modified Calcium Silicate Coatings Promote Osteogenic Differentiation through TGF-β/Smad Pathway and Osseointegration in Osteopenic Rabbits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surface-modified metal implants incorporating different ions have been employed in the biomedical field as bioactive dental implants with good osseointegration properties. However, the molecular mechanism through which surface coatings exert the biological activity is not fully understood, and the effects have been difficult to achieve, especially in the osteopenic bone. In this study, We examined the effect of zinc-modified calcium silicate coatings with two different Zn contents to induce osteogenic differentiation of rat bone marrow-derived pericytes (BM-PCs) and osteogenetic efficiency in ovariectomised rabbits. Ti-6Al-4V with zinc-modified calcium silicate coatings not only enhanced proliferation but also promoted osteogenic differentiation and mineralized matrix deposition of rat BM-PCs as the zinc content and culture time increased in vitro. The associated molecular mechanisms were investigated by Q-PCR and Western blotting, revealing that TGF-β/Smad signaling pathway plays a direct and significant role in regulating BM-PCs osteoblastic differentiation on Zn-modified coatings. Furthermore, in vivo results that revealed Zn-modified calcium silicate coatings significantly promoted new bone formation around the implant surface in osteopenic rabbits as the Zn content and exposure time increased. Therefore, Zn-modified calcium silicate coatings can improve implant osseointegration in the condition of osteopenia, which may be beneficial for patients suffering from osteoporosis-related fractures.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair.

          Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles.

            With large-scale production and wide application of nanoscale ZnO, its health hazard has attracted extensive worldwide attention. In this study, cytotoxicity of different sized and shaped ZnO nanoparticles in mouse macrophage Ana-1 was investigated. And contribution of dissolved Zn(2+) and ROS in toxicity of ZnO particles was analyzed. The results indicated that ZnO particles manifested dose-dependent toxic effect on Ana-1 cells without size-dependence, and the particles shape may impact cytotoxicity of ZnO particles. When the concentration of dissolved Zn(2+) tended to equilibrium in the complete cell medium, the zinc ion concentration was approximately 10 μg/ml, inducing about 50% cell death, which was close to the cytotoxicity of ZnCl(2) (IC(50)=13.33 μg Zn/ml). The Zn(2+) concentration had significant correlations with cell viability and LDH level induced by the supernatant of ZnO particle suspensions (incubation at 37°C for 24h). Thus, the dissolved Zn(2+) played the main role in toxic effect of ZnO particles. Moreover, ROS generation assays demonstrated that ZnO particles produced intrinsically a small quantity of ROS, intracellular ROS was mainly produced after ZnO particles or the dissolved Zn(2+) entered into the cells. Although intracellular ROS had significant correlations with cell viability and LDH induced by ZnO particles, intracellular ROS may not be a major factor in cytotoxicity of ZnO nanoparticles, but the cytotoxic response. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway.

              Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used β-tricalcium phosphate (β-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to β-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the β-TCP stimulation, indicating that macrophage may participate in the β-TCP stimulated osteogenesis. Interestingly, when macrophage-conditioned β-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                yjm_st@163.com
                061022049@fudan.edu.cn
                yespine@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 June 2017
                13 June 2017
                2017
                : 7
                : 3440
                Affiliations
                [1 ]ISNI 0000 0004 0369 1660, GRID grid.73113.37, Department of Orthopaedics, , Changzheng Hospital of Second Military Medical University, ; Shanghai, 200003 China
                [2 ]ISNI 0000000119573309, GRID grid.9227.e, Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, ; Shanghai, 200050 China
                [3 ]ISNI 0000 0004 0369 6365, GRID grid.22069.3f, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, , East China Normal University, ; Shanghai, 200241 China
                [4 ]National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
                Article
                3661
                10.1038/s41598-017-03661-5
                5469779
                28611362
                78ce6d57-2be4-4973-a63a-e70464bc2e3b
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 October 2016
                : 3 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article