29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Target prediction for small, noncoding RNAs in bacteria

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many small, noncoding RNAs in bacteria act as post-transcriptional regulators by basepairing with target mRNAs. While the number of characterized small RNAs (sRNAs) has steadily increased, only a limited number of the corresponding mRNA targets have been identified. Here we present a program, TargetRNA, that predicts the targets of these bacterial RNA regulators. The program was evaluated by assessing whether previously known targets could be identified. The program was then used to predict targets for the Escherichia coli RNAs RyhB, OmrA, OmrB and OxyS, and the predictions were compared with changes in whole genome expression patterns observed upon expression of the sRNAs. Our results show that TargetRNA is a useful tool for finding mRNA targets of sRNAs, although its rate of success varies between sRNAs.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of common molecular subsequences.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of mammalian microRNA targets.

            MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vienna RNA secondary structure server.

              The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2006
                2006
                22 May 2006
                : 34
                : 9
                : 2791-2802
                Affiliations
                Computer Science Department, Wellesley College Wellesley, MA 02481, USA
                1Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development Bethesda, MD 208902-5430, USA
                2Laboratory of Molecular Biology, National Cancer Institute Bethesda, MD 20892, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 781 283 3354; Fax: +1 781 283 3642; Email: btjaden@ 123456wellesley.edu

                Present addresses: Sarah S. Goodwin, University of California, San Francisco, CA 94143, USA

                Daniel X. Fu, California Institute of Technology, Pasadena, CA 91126, USA

                Article
                10.1093/nar/gkl356
                1464411
                16717284
                78e3f3d7-e303-492c-b85f-d7d3730963b5
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 02 February 2006
                : 05 April 2006
                : 20 April 2006
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article