+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      African Swine Fever Virus Uses Macropinocytosis to Enter Host Cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na +/H + exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

          Author Summary

          ASFV is a highly pathogenic zoonotic virus, which can cause severe economic losses and bioterrorism threats. No vaccine against ASFV is available so far. A strong hazard of ASFV dissemination through EU countries from Caucasian areas has recently emerged, thus making urgent to acquire knowledge and tools for protection against this virus. Despite that, our understanding of how ASFV enters host cells is very limited. A thorough understanding of this process would enable to design targeted antiviral therapies and vaccine development. The present study clearly defines key steps of ASFV cellular uptake, as well as the host factors responsible for permitting virus entry into cells. Our results indicate that the primary mechanism of ASFV uptake is a macropinocytosis-like process, that involves cellular membrane perturbation, actin polarization, activity of Na +/H + membrane channels, and signaling proceedings typical of the macropinocytic mechanism of endocytosis, such as Rac1-Pak1 pathways, PI3K and tyrosine-kinases activation. These findings help understanding how ASFV infects cells and suggest that disturbance of macropinocytosis may be useful in the impairment of infection and vaccine development.

          Related collections

          Most cited references 101

          • Record: found
          • Abstract: found
          • Article: not found

          The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.

          The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.
            • Record: found
            • Abstract: found
            • Article: not found

            Virus Entry: Open Sesame

            Detailed information about the replication cycle of viruses and their interactions with host organisms is required to develop strategies to stop them. Cell biology studies, live-cell imaging, and systems biology have started to illuminate the multiple and subtly different pathways that animal viruses use to enter host cells. These insights are revolutionizing our understanding of endocytosis and the movement of vesicles within cells. In addition, such insights reveal new targets for attacking viruses before they can usurp the host-cell machinery for replication.
              • Record: found
              • Abstract: found
              • Article: not found

              Virus entry by endocytosis.

              Although viruses are simple in structure and composition, their interactions with host cells are complex. Merely to gain entry, animal viruses make use of a repertoire of cellular processes that involve hundreds of cellular proteins. Although some viruses have the capacity to penetrate into the cytosol directly through the plasma membrane, most depend on endocytic uptake, vesicular transport through the cytoplasm, and delivery to endosomes and other intracellular organelles. The internalization may involve clathrin-mediated endocytosis (CME), macropinocytosis, caveolar/lipid raft-mediated endocytosis, or a variety of other still poorly characterized mechanisms. This review focuses on the cell biology of virus entry and the different strategies and endocytic mechanisms used by animal viruses.

                Author and article information

                Role: Editor
                PLoS Pathog
                PLoS Pathog
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                June 2012
                June 2012
                14 June 2012
                : 8
                : 6
                Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
                Rosalind Franklin University of Medicine and Science, United States of America
                Author notes

                Conceived and designed the experiments: EGS YR. Performed the experiments: EGS AQ DPN MN SB ALC. Analyzed the data: EGS DPN YR. Contributed reagents/materials/analysis tools: ALC MN SB. Wrote the paper: EGS DPN YR.

                Sánchez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 22
                Research Article
                Viral Immune Evasion
                Host-Pathogen Interaction
                Molecular Cell Biology
                Cellular Stress Responses
                Cellular Structures
                Signal Transduction
                Veterinary Science
                Veterinary Microbiology

                Infectious disease & Microbiology


                Comment on this article