9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cysteine is an important amino acid for various industries; however, there is no efficient microbial fermentation-based production method available. Owing to its cytotoxicity, bacterial intracellular levels of cysteine are stringently controlled via several modes of regulation, including cysteine degradation by cysteine desulfhydrases and cysteine desulfidases. In Escherichia coli, several metabolic enzymes are known to exhibit cysteine degradative activities, however, their specificity and physiological significance for cysteine detoxification via degradation are unclear. Relaxing the strict regulation of cysteine is crucial for its overproduction; therefore, identifying and modulating the major degradative activity could facilitate the genetic engineering of a cysteine-producing strain. In the present study, we used genetic screening to identify genes that confer cysteine resistance in E. coli and we identified yhaM, which encodes cysteine desulfidase and decomposes cysteine into hydrogen sulfide, pyruvate, and ammonium. Phenotypic characterization of a yhaM mutant via growth under toxic concentrations of cysteine followed by transcriptional analysis of its response to cysteine showed that yhaM is cysteine-inducible, and its physiological role is associated with resisting the deleterious effects of cysteine in E. coli. In addition, we confirmed the effects of this gene on the fermentative production of cysteine using E. coli-based cysteine-producing strains. We propose that yhaM encodes the major cysteine-degrading enzyme and it has the most significant role in cysteine detoxification among the numerous enzymes reported in E. coli, thereby providing a core target for genetic engineering to improve cysteine production in this bacterium.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids.

          M Gaitonde (1967)
          1. An acid ninhydrin reagent was found to react specifically in forming a pink product (E(max.) 560mmu) with cysteine. 2. The method was highly sensitive for the determination of cysteine (in 28.0x10(3)). Homocysteine, glutathione, proline, ornithine and other naturally occurring amino acids tested did not give a similar reaction. 3. The reaction product was stable for at least 3-4hr. at room temperature and the extinction was proportional to the concentration in the range 0.05-0.5mumole of cysteine. 4. The acid ninhydrin reagent also gave yellow products (E(max.) 370-404mmu) with tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine and indol-3-ylacetic acid. 5. The method was applied for the determination of cysteine in perchloric acid extracts of rat brain, liver and blood.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and functional analysis of Escherichia coli cysteine desulfhydrases.

            In Escherichia coli, three additional proteins having L-cysteine desulfhydrase activity were identified as O-acetylserine sulfhydrylase-A, O-acetylserine sulfhydrylase-B, and MalY protein, in addition to tryptophanase and cystathionine beta-lyase, which have been reported previously. The gene disruption for each protein was significantly effective for overproduction of L-cysteine and L-cystine. Growth phenotype and transcriptional analyses suggest that tryptophanase contributes primarily to L-cysteine degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway.

              A chromosomal fragment has been identified in a gene bank from Escherichia coli, which augmented the yield of cysteine in an industrial production strain. Subcloning and genetic analysis showed that an open reading frame coding for a product of 299 amino acids (Orf299) was responsible. Orf299 was synthesized in the T7 polymerase/promoter system and exhibited the properties of an integral membrane protein. Mutational interruption of orf299 did not cause a distinct phenotype; however, transformants overexpressing orf299 had lost the ability to grow in minimal medium unless it was supplemented with a source of reduced sulphur compounds, and they excreted considerable amounts of cysteine and O-acetyl-L-serine, especially in the presence of thiosulphate. Most of the cysteine was found to be masked in 2-methyl-2,4-thiazolidinedicarboxylic acid. N-acetyl-L-serine was also present in the medium, but it is open to question whether it represents a primary excretion product. Measurement of the induction status of the cysteine regulon by means of a cysK'-'lacZ gene fusion demonstrated that the regulon is not induced upon growth in the presence of a poor sulphur source and that the introduction of a constitutive cysB allele alleviates this deficiency. The results indicate that orf299 codes for an export pump for different metabolites of the cysteine pathway. Its relation to other efflux systems and the physiological role are discussed.
                Bookmark

                Author and article information

                Contributors
                81-44-244-7159 , gen_nonaka@ajinomoto.com
                kazuhiro_takumi@ajinomoto.com
                Journal
                AMB Express
                AMB Express
                AMB Express
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2191-0855
                10 May 2017
                10 May 2017
                2017
                : 7
                : 90
                Affiliations
                Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan
                Author information
                http://orcid.org/0000-0003-3362-8067
                Article
                389
                10.1186/s13568-017-0389-y
                5423876
                28488255
                78f51212-5c12-4a14-b922-b8455a0eb8d6
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 13 April 2017
                : 21 April 2017
                Categories
                Original Article
                Custom metadata
                © The Author(s) 2017

                Biotechnology
                cysteine degradation,cysteine desulfidase,cysteine desulfhydrase,cysteine fermentation,yham

                Comments

                Comment on this article