85
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical Exercise in New Health Concepts: A Clinician Point of View

      other
      1 , a , 2 , a , 2 , 1 ,
      BIO Integration
      Compuscript

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Lack of exercise is a major cause of chronic diseases.

          Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life. © 2012 American Physiological Society. Compr Physiol 2:1143-1211, 2012.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrative biology of exercise.

            Exercise represents a major challenge to whole-body homeostasis provoking widespread perturbations in numerous cells, tissues, and organs that are caused by or are a response to the increased metabolic activity of contracting skeletal muscles. To meet this challenge, multiple integrated and often redundant responses operate to blunt the homeostatic threats generated by exercise-induced increases in muscle energy and oxygen demand. The application of molecular techniques to exercise biology has provided greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses, and recent discoveries offer perspectives on the mechanisms by which muscle "communicates" with other organs and mediates the beneficial effects of exercise on health and performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis.

              Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are major phospholipids in mammalian membranes. In liver, PC is synthesized via the choline pathway or by methylation of PE via phosphatidylethanolamine N-methyltransferase (PEMT). Pemt(-/-) mice fed a choline-deficient (CD) diet develop rapid steatohepatitis leading to liver failure. Steatosis is observed in CD mice that lack both PEMT and multiple drug-resistant protein 2 (MDR2), required for PC secretion into bile. We demonstrate that liver failure in CD-Pemt(-/-) mice is due to loss of membrane integrity caused by a decreased PC/PE ratio. The CD-Mdr2(-/-)/Pemt(-/-) mice escape liver failure by maintaining a normal PC/PE ratio. Manipulation of PC/PE levels suggests that this ratio is a key regulator of cell membrane integrity and plays a role in the progression of steatosis into steatohepatitis. The results have clinical implications as patients with nonalcoholic steatohepatitis have a decreased ratio of PC to PE compared to control livers.
                Bookmark

                Author and article information

                Journal
                BIOI
                BIO Integration
                BIOI
                Compuscript (Ireland )
                2712-0082
                2712-0074
                June 2022
                11 February 2022
                : 3
                : 2
                : 89-92
                Affiliations
                [1] 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guandong, P.R. China
                [2] 2Department of Orthopedics, Pingyuan People’s Hospital, Guangdong, P.R. China
                Author notes
                *Correspondence to Jingyi Hou, E-mail: houjy7@ 123456mail.sysu.edu.cn

                aThese authors contributed equally to this work.

                Article
                bioi20210031
                10.15212/bioi-2021-0031
                78f67654-c998-4b55-9b22-1b71cdbd430b
                Copyright © 2022 The Authors

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See https://bio-integration.org/copyright-and-permissions/

                Product
                Self URI (journal-page): https://bio-integration.org/
                Categories
                Commentary

                Medicine,Molecular medicine,Radiology & Imaging,Biotechnology,Pharmacology & Pharmaceutical medicine,Microscopy & Imaging

                Comments

                Comment on this article