70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergence of Assortative Mixing between Clusters of Cultured Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons ( clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a ‘connectivity backbone’ in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.

          Author Summary

          The architecture of neuronal cultures is the result of an intricate self-organization process that balances structural and dynamical demands. We observe that when the motility of neurons is allowed, these neurons organize into compact clusters. These neuronal assemblies have an intrinsic synchronous activity that makes the whole cluster firing at unison. Clusters connect to their neighbors to form a network with rich spontaneous dynamics. This dynamics ultimately shapes a directed functional network whose properties are investigated using network descriptors. We find that the networks are formed such that preference in connectivity between clusters is based on the similarity between their activity, a property that is called assortative mixing in networks' language. This particular choice of connectivity correlations must be rooted to basic survival mechanisms for the neurons constituting the culture.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Assortative mixing in networks

          M. Newman (2002)
          A network is said to show assortative mixing if the nodes in the network that have many connections tend to be connected to other nodes with many connections. We define a measure of assortative mixing for networks and use it to show that social networks are often assortatively mixed, but that technological and biological networks tend to be disassortative. We propose a model of an assortative network, which we study both analytically and numerically. Within the framework of this model we find that assortative networks tend to percolate more easily than their disassortative counterparts and that they are also more robust to vertex removal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Efficient Behavior of Small-World Networks

            We introduce the concept of efficiency of a network, measuring how efficiently it exchanges information. By using this simple measure small-world networks are seen as systems that are both globally and locally efficient. This allows to give a clear physical meaning to the concept of small-world, and also to perform a precise quantitative a nalysis of both weighted and unweighted networks. We study neural networks and man-made communication and transportation systems and we show that the underlying general principle of their construction is in fact a small-world principle of high efficiency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The small world of the cerebral cortex.

              While much information is available on the structural connectivity of the cerebral cortex, especially in the primate, the main organizational principles of the connection patterns linking brain areas, columns and individual cells have remained elusive. We attempt to characterize a wide variety of cortical connectivity data sets using a specific set of graph theory methods. We measure global aspects of cortical graphs including the abundance of small structural motifs such as cycles, the degree of local clustering of connections and the average path length. We examine large-scale cortical connection matrices obtained from neuroanatomical data bases, as well as probabilistic connection matrices at the level of small cortical neuronal populations linked by intra-areal and inter-areal connections. All cortical connection matrices examined in this study exhibit "small-world" attributes, characterized by the presence of abundant clustering of connections combined with short average distances between neuronal elements. We discuss the significance of these universal organizational features of cortex in light of functional brain anatomy. Supplementary materials are at www.indiana.edu/~cortex/lab.htm.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2014
                4 September 2014
                : 10
                : 9
                : e1003796
                Affiliations
                [1 ]Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
                [2 ]Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
                École Normale Supérieure, College de France, CNRS, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JS ST. Performed the experiments: ST JS. Analyzed the data: ST CG SG. Contributed reagents/materials/analysis tools: CG ST MDD SG AA. Wrote the paper: JS AA ST CG SG. Conceived the model: AA SG.

                Article
                PCOMPBIOL-D-14-00176
                10.1371/journal.pcbi.1003796
                4154651
                25188377
                79199455-70bc-45fd-9175-1630eda661dc
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 January 2014
                : 6 July 2014
                Page count
                Pages: 17
                Funding
                Research was supported by the Ministerio de Ciencia e Innovaci\'on (Spain, www.idi.mineco.gob.es) under projects FIS2010-21924-C02-02, FIS2011-28820-C02-01, FIS2012-38266-C02-01, and FIS2010-09832-E. We also acknowledge the Generalitat de Catalunya ( www10.gencat.cat/agaur_web) under projects 2009-SGR-00014 and 2009-SGR-838, and the EU FET (MULTIPLEX 317532). A.A. also acknowledges partial financial support from the ICREA Academia and the James S.\ McDonnell Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biophysics
                Biophysical Simulations
                Biophysics Theory
                Computational Biology
                Neuroscience
                Neural Networks
                Computer and Information Sciences
                Systems Science
                Complex Systems
                Physical Sciences
                Mathematics
                Applied Mathematics
                Physics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article