5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Accelerated quantification of amphetamine enantiomers in human urine using chiral liquid chromatography and on-line column-switching coupled with tandem mass spectrometry

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Amphetamine, past and present – a pharmacological and clinical perspective

          Amphetamine was discovered over 100 years ago. Since then, it has transformed from a drug that was freely available without prescription as a panacea for a broad range of disorders into a highly restricted Controlled Drug with therapeutic applications restricted to attention deficit hyperactivity disorder (ADHD) and narcolepsy. This review describes the relationship between chemical structure and pharmacology of amphetamine and its congeners. Amphetamine’s diverse pharmacological actions translate not only into therapeutic efficacy, but also into the production of adverse events and liability for recreational abuse. Accordingly, the balance of benefit/risk is the key challenge for its clinical use. The review charts advances in pharmaceutical development from the introduction of once-daily formulations of amphetamine through to lisdexamfetamine, which is the first d-amphetamine prodrug approved for the management of ADHD in children, adolescents and adults. The unusual metabolic route for lisdexamfetamine to deliver d-amphetamine makes an important contribution to its pharmacology. How lisdexamfetamine’s distinctive pharmacokinetic/pharmacodynamic profile translates into sustained efficacy as a treatment for ADHD and its reduced potential for recreational abuse is also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential adverse effects of amphetamine treatment on brain and behavior: a review.

            Amphetamine stimulants have been used medically since early in the twentieth century, but they have a high abuse potential and can be neurotoxic. Although they have long been used effectively to treat attention deficit hyperactivity disorder (ADHD) in children and adolescents, amphetamines are now being prescribed increasingly as maintenance therapy for ADHD and narcolepsy in adults, considerably extending the period of potential exposure. Effects of prolonged stimulant treatment have not been fully explored, and understanding such effects is a research priority. Because the pharmacokinetics of amphetamines differ between children and adults, reevaluation of the potential for adverse effects of chronic treatment of adults is essential. Despite information on the effects of stimulants in laboratory animals, profound species differences in susceptibility to stimulant-induced neurotoxicity underscore the need for systematic studies of prolonged human exposure. Early amphetamine treatment has been linked to slowing in height and weight growth in some children. Because the number of prescriptions for amphetamines has increased several fold over the past decade, an amphetamine-containing formulation is the most commonly prescribed stimulant in North America, and it is noteworthy that amphetamines are also the most abused prescription medications. Although early treatment does not increase risk for substance abuse, few studies have tracked the compliance and usage profiles of individuals who began amphetamine treatment as adults. Overall, there is concern about risk for slowed growth in young patients who are dosed continuously, and for substance abuse in patients first medicated in late adolescence or adulthood. Although most adult patients also use amphetamines effectively and safely, occasional case reports indicate that prescription use can produce marked psychological adverse events, including stimulant-induced psychosis. Assessments of central toxicity and adverse psychological effects during late adulthood and senescence of adults who receive prolonged courses of amphetamine treatment are warranted. Finally, identification of the biological factors that confer risk and those that offer protection is also needed to better specify the parameters of safe, long-term, therapeutic administration of amphetamines to adults.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Illegal or legitimate use? Precursor compounds to amphetamine and methamphetamine.

              F Musshoff (2000)
              The interpretation of methamphetamine and amphetamine positive test results in biological samples is a challenge to clinical and forensic toxicology for several reasons. The effects of pH and dilution of urine samples and the knowledge about legitimate and illicit sources have to be taken into account. Besides a potentially legal prescription of amphetamines, many substances metabolize to methamphetamine or amphetamine in the body: amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Especially the knowledge of potential origins of methamphetamine and amphetamine turns out to be very important to prevent a misinterpretation of the surrounding circumstances and to prove illegal drug abuse. In this review, potential precursor compounds are described, including their medical use and major clinical effects and their metabolic profiles, as well as some clues which help to identify the sources.
                Bookmark

                Author and article information

                Journal
                Analytical and Bioanalytical Chemistry
                Anal Bioanal Chem
                Springer Nature
                1618-2642
                1618-2650
                February 2017
                November 12 2016
                February 2017
                : 409
                : 5
                : 1291-1300
                Article
                10.1007/s00216-016-0056-1
                7923eb7c-b47b-485f-a4a1-804960617f1b
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article