28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of PI3K/Akt/HIF-1α Signaling is Involved in Lung Protection of Dexmedetomidine in Patients Undergoing Video-Assisted Thoracoscopic Surgery: A Pilot Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lung resection and one lung ventilation (OLV) during video-assisted thoracoscopic surgery (VATS) may lead to acute lung injury. Dexmedetomidine (DEX), a highly selective α 2 adrenergic receptor agonist, improves arterial oxygenation in adult patients undergoing thoracic surgery. The aim of this pilot study was to explore possible mechanism related to lung protection of DEX in patients undergoing VATS.

          Patients and Methods

          Seventy-four patients scheduled for VATS were enrolled in this study. Three timepoints (before anesthesia induction (T 0), 40 min after OLV (T 1), and 10 min after two-lung ventilation (T 2)) of arterial blood gas were obtained. Meanwhile, lung histopathologic examination, immunohistochemistry analysis (occludin and ZO-1), levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in lung tissue and plasma, and activation of phosphoinositide-3-kinase (PI3K)/AKT/hypoxia-inducible factor (HIF)-1α signaling were detected. Postoperative outcomes including duration of withdrawing the pleural drainage tube, length of hospital stay, hospitalization expenses, and postoperative pulmonary complications (PPCs) were also recorded.

          Results

          Sixty-seven patients were randomly divided into DEX group (group D, n=33) and control group (group N, n=34). DEX improved oxygenation at T 1 and T 2 (group D vs group N; T 1: 191.8 ± 49.8 mmHg vs 159.6 ± 48.1 mmHg, P = 0.009; T 2: 406.0 mmHg [392.2–423.7] vs 374.5 mmHg [340.2–378.2], P = 0.001). DEX alleviated the alveolar capillary epithelial structure damage, increased protein expression of ZO-1 and occludin, inhibited elevation of the expression of TNF-α and IL-6 in lung tissue and plasma, and increased protein expression of p-PI3K, p-AKT and HIF-1α. Dex administered had better postoperative outcomes with less risk of PPCs and hospitalization expenses as well as shorter duration of withdrawing the pleural drainage tube and length of hospital stay.

          Conclusion

          Activation of PI3K/Akt/HIF-1α signaling might be involved in lung protection of DEX in patients undergoing VATS.

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein.

            Hypoxic pulmonary vasoconstriction is associated with but may not be sufficient for the development of high-altitude pulmonary oedema (HAPO). Hypoxia is known to induce an inflammatory response in immune cells and endothelial cells. It has been speculated that hypoxia-induced inflammatory cytokines at high altitude may contribute to the development of HAPO by causing capillary leakage in the lung. We were interested if such an inflammatory response, possibly involved in a later development of HAPO, is detectable at high altitude in individuals without HAPO. We examined the plasma levels of interleukin 6 (IL-6), interleukin 1 receptor antagonist (IL-1ra) and C-reactive protein (CRP) in two independent studies: study A, Jungfraujoch, Switzerland, three overnight stays at 3458 m, n=12; study B: Capanna Regina Margherita, Italy, 3 overnight stays at 3647 m and one overnight stay at 4559 m, n=10. In both studies, probands showed symptoms of acute mountain sickness but no signs of HAPO. At the Jungfraujoch, IL-6 increased from 0.1+/-0.03 pg/ml to 2. 0+/-0.5 pg/ml (day 2, P=0.03), IL-1ra from 101+/-21 to 284+/-73 pg/ml (day 2, P=0.01), and CRP from 1.0+/-0.4 to 5.8+/-1.5 micrograms/ml (day 4, P=0.01). At the Capanna Margherita, IL-6 increased from 0. 5+/-0.2 pg/ml to 2.0+/-0.8 pg/ml (P=0.02), IL-1ra from 118+/-25 to 213+/-28 pg/ml (P=0.02), and CRP from 0.4+/-0.03 to 3.5+/-1.1 micrograms/ml (P=0.03). IL-8 was below the detection limit of the ELISA (<25 pg/ml) in both studies. The increase of IL-6 and IL-1ra in response to high altitude was delayed and preceded the increase of CRP. We conclude that: (1) circulating IL-6, IL-1ra and CRP are upregulated in response to hypobaric hypoxic conditions at high altitude, and (2) the moderate systemic increase of these inflammatory markers may reflect considerable local inflammation. The existence and the kinetics of high altitude-induced cytokines found in this study support the hypothesis that inflammation is involved in the development of HAPO. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lung Injury After One-Lung Ventilation: A Review of the Pathophysiologic Mechanisms Affecting the Ventilated and the Collapsed Lung.

              Lung injury is the leading cause of death after thoracic surgery. Initially recognized after pneumonectomy, it has since been described after any period of 1-lung ventilation (OLV), even in the absence of lung resection. Overhydration and high tidal volumes were thought to be responsible at various points; however, it is now recognized that the pathophysiology is more complex and multifactorial. All causative mechanisms known to trigger ventilator-induced lung injury have been described in the OLV setting. The ventilated lung is exposed to high strain secondary to large, nonphysiologic tidal volumes and loss of the normal functional residual capacity. In addition, the ventilated lung experiences oxidative stress, as well as capillary shear stress because of hyperperfusion. Surgical manipulation and/or resection of the collapsed lung may induce lung injury. Re-expansion of the collapsed lung at the conclusion of OLV invariably induces duration-dependent, ischemia-reperfusion injury. Inflammatory cytokines are released in response to localized injury and may promote local and contralateral lung injury. Protective ventilation and volatile anesthesia lessen the degree of injury; however, increases in biochemical and histologic markers of lung injury appear unavoidable. The endothelial glycocalyx may represent a common pathway for lung injury creation during OLV, because it is damaged by most of the recognized lung injurious mechanisms. Experimental therapies to stabilize the endothelial glycocalyx may afford the ability to reduce lung injury in the future. In the interim, protective ventilation with tidal volumes of 4 to 5 mL/kg predicted body weight, positive end-expiratory pressure of 5 to 10 cm H2O, and routine lung recruitment should be used during OLV in an attempt to minimize harmful lung stress and strain. Additional strategies to reduce lung injury include routine volatile anesthesia and efforts to minimize OLV duration and hyperoxia.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                24 November 2020
                2020
                : 14
                : 5155-5166
                Affiliations
                [1 ]Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University , Nanjing 210029, People’s Republic of China
                Author notes
                Correspondence: Yanning Qian; Chanjuan GongDepartment of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University , Nanjing210029Jiangsu, People’s Republic of ChinaTel +86 13951701214; +86 15951893101 Email yanning_qian@163.com; gcjalch@126.com
                Author information
                http://orcid.org/0000-0002-6559-6162
                Article
                276005
                10.2147/DDDT.S276005
                7699453
                33262576
                792d0eb0-50b6-4c8d-af9a-299e5625ba3c
                © 2020 Zhu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 12 August 2020
                : 11 November 2020
                Page count
                Figures: 6, Tables: 6, References: 48, Pages: 12
                Funding
                Funded by: Priority Academic Program Development of Jiangsu Higher Education Institutions;
                This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                lung protection,dexmedetomidine,occludin,zo-1,pi3k,akt,hif-1α
                Pharmacology & Pharmaceutical medicine
                lung protection, dexmedetomidine, occludin, zo-1, pi3k, akt, hif-1α

                Comments

                Comment on this article