3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria.

          A key hallmark of many cancers, particularly the most aggressive, is the capacity to metabolize glucose at an elevated rate, a phenotype detected clinically using positron emission tomography (PET). This phenotype provides cancer cells, including those that participate in metastasis, a distinct competitive edge over normal cells. Specifically, after rapid entry of glucose into cancer cells on the glucose transporter, the highly glycolytic phenotype is supported by hexokinase (primarily HK II) that is overexpressed and bound to the outer mitochondrial membrane via the porin-like protein voltage-dependent anion channel (VDAC). This protein and the adenine nucleotide transporter move ATP, newly synthesized by the inner membrane located ATP synthase, to active sites on HK II. The abundant amounts of HK II bind both the ATP and the incoming glucose producing the product glucose-6-phosphate, also at an elevated rate. This critical metabolite then serves both as a biosynthetic precursor to support cell proliferation and as a precursor for lactic acid, the latter exiting cancer cells causing an unfavorable environment for normal cells. Although helping facilitate this chemical warfare, HK II via its mitochondrial location also suppresses the death of cancer cells, thus increasing their possibility for metastasis and the ultimate death of the human host. For these reasons, targeting this key enzyme is currently being investigated in several laboratories in a strategy to develop novel therapies that may turn the tide on the continuing struggle to find effective cures for cancer. One such candidate is 3-bromopyruvate that has been shown recently to eradicate advanced stage, PET positive hepatocellular carcinomas in an animal model without apparent harm to the animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak.

            The serine/threonine kinase Akt inhibits mitochondrial cytochrome c release and apoptosis induced by a variety of proapoptotic stimuli. The antiapoptotic activity of Akt is coupled, at least in part, to its effects on cellular metabolism. Here, we provide genetic evidence that Akt is required to maintain hexokinase association with mitochondria. Targeted disruption of this association impairs the ability of growth factors and Akt to inhibit cytochrome c release and apoptosis. Targeted disruption of mitochondria-hexokinase (HK) interaction or exposure to proapoptotic stimuli that promote rapid dissociation of hexokinase from mitochondria potently induce cytochrome c release and apoptosis, even in the absence of Bax and Bak. These effects are inhibited by activated Akt, but not by Bcl-2, implying that changes in outer mitochondrial membrane (OMM) permeability leading to apoptosis can occur in the absence of Bax and Bak and that Akt inhibits these changes through maintenance of hexokinase association with mitochondria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of hexokinase binding to VDAC.

              Hexokinase isoforms I and II bind to mitochondrial outer membranes in large part by interacting with the outer membrane voltage-dependent anion channel (VDAC). This interaction results in a shift in the susceptibility of mitochondria to pro-apoptotic signals that are mediated through Bcl2-family proteins. The upregulation of hexokinase II expression in tumor cells is thought to provide both a metabolic benefit and an apoptosis suppressive capacity that gives the cell a growth advantage and increases its resistance to chemotherapy. However, the mechanisms responsible for the anti-apoptotic effect of hexokinase binding and its regulation remain poorly understood. We hypothesize that hexokinase competes with Bcl2 family proteins for binding to VDAC to influence the balance of pro-and anti-apoptotic proteins that control outer membrane permeabilization. Hexokinase binding to VDAC is regulated by protein kinases, notably glycogen synthase kinase (GSK)-3beta and protein kinase C (PKC)-epsilon. In addition, there is evidence that the cholesterol content of the mitochondrial membranes may contribute to the regulation of hexokinase binding. At the same time, VDAC associated proteins are critically involved in the regulation of cholesterol uptake. A better characterization of these regulatory processes is required to elucidate the role of hexokinases in normal tissue function and to apply these insights for optimizing cancer treatment.
                Bookmark

                Author and article information

                Journal
                Journal of Bioenergetics and Biomembranes
                J Bioenerg Biomembr
                Springer Science and Business Media LLC
                0145-479X
                1573-6881
                October 2016
                November 17 2016
                October 2016
                : 48
                : 5
                : 531-548
                Article
                10.1007/s10863-016-9687-3
                793a6e93-4d57-4249-80b5-88da4baaa125
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article