38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Economic benefits of methylmercury exposure control in Europe: Monetary value of neurotoxicity prevention

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis.

          Methods

          Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity.

          Results

          The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects.

          Conclusions

          These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in southern countries. Some data may not be entirely representative, some countries were not covered, and anticipated changes in mercury pollution all suggest a need for extended biomonitoring of human MeHg exposure.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury.

            A cohort of 1022 consecutive singleton births was generated during 1986-1987 in the Faroe Islands. Increased methylmercury exposure from maternal consumption of pilot whale meat was indicated by mercury concentrations in cord blood and maternal hair. At approximately 7 years of age, 917 of the children underwent detailed neurobehavioral examination. Neuropsychological tests included Finger Tapping; Hand-Eye Coordination; reaction time on a Continuous Performance Test; Wechsler Intelligence Scale for Children-Revised Digit Spans, Similarities, and Block Designs; Bender Visual Motor Gestalt Test; Boston Naming Test; and California Verbal Learning Test (Children). Clinical examination and neurophysiological testing did not reveal any clear-cut mercury-related abnormalities. However, mercury-related neuropsychological dysfunctions were most pronounced in the domains of language, attention, and memory, and to a lesser extent in visuospatial and motor functions. These associations remained after adjustment for covariates and after exclusion of children with maternal hair mercury concentrations above 10 microgram(s) (50 nmol/g). The effects on brain function associated with prenatal methylmercury exposure therefore appear widespread, and early dysfunction is detectable at exposure levels currently considered safe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Environmental pollutants and disease in American children: estimates of morbidity, mortality, and costs for lead poisoning, asthma, cancer, and developmental disabilities.

              In this study, we aimed to estimate the contribution of environmental pollutants to the incidence, prevalence, mortality, and costs of pediatric disease in American children. We examined four categories of illness: lead poisoning, asthma, cancer, and neurobehavioral disorders. To estimate the proportion of each attributable to toxins in the environment, we used an environmentally attributable fraction (EAF) model. EAFs for lead poisoning, asthma, and cancer were developed by panels of experts through a Delphi process, whereas that for neurobehavioral disorders was based on data from the National Academy of Sciences. We define environmental pollutants as toxic chemicals of human origin in air, food, water, and communities. To develop estimates of costs, we relied on data from the U.S. Environmental Protection Agency, Centers for Disease Control and Prevention, National Center for Health Statistics, the Bureau of Labor Statistics, the Health Care Financing Agency, and the Practice Management Information Corporation. EAFs were judged to be 100% for lead poisoning, 30% for asthma (range, 10-35%), 5% for cancer (range, 2-10%), and 10% for neurobehavioral disorders (range, 5-20%). Total annual costs are estimated to be $54.9 billion (range $48.8-64.8 billion): $43.4 billion for lead poisoning, $2.0 billion for asthma, $0.3 billion for childhood cancer, and $9.2 billion for neurobehavioral disorders. This sum amounts to 2.8 percent of total U.S. health care costs. This estimate is likely low because it considers only four categories of illness, incorporates conservative assumptions, ignores costs of pain and suffering, and does not include late complications for which etiologic associations are poorly quantified. The costs of pediatric environmental disease are high, in contrast with the limited resources directed to research, tracking, and prevention.
                Bookmark

                Author and article information

                Journal
                Environ Health
                Environ Health
                Environmental Health
                BioMed Central
                1476-069X
                2013
                7 January 2013
                : 12
                : 3
                Affiliations
                [1 ]EHESP School of Public Health, Rennes Cedex, France
                [2 ]FPS Health, Food Chain Safety and Environment, Brussels, Belgium
                [3 ]Karolinska Institutet, Stockholm, Sweden
                [4 ]Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
                [5 ]National Institute of Public Health, Prague, Czech Republic
                [6 ]EDI, Bundesamt für Gesundheit, Liebefeld, Switzerland
                [7 ]Health Service Executive South, Cork, Ireland
                [8 ]Laboratoire National de Santé, Luxembourg, Luxembourg
                [9 ]Environmental Health Center, Cluj-Napoca, Romania
                [10 ]Public Health Authority of the Slovak Republic, Bratislava, Slovakia
                [11 ]Cyprus State General Laboratory, Nicosia, Cyprus
                [12 ]Department of Public Health, University of Copenhagen, Copenhagen, Denmark
                [13 ]Umweltbundesamt, Berlin, Germany
                [14 ]Flemish Institute for Technological Research, Mol, Belgium
                [15 ]Nofer Institute of Occupational Medicine, Lodz, Poland
                [16 ]Jožef Stefan Institute, Ljubljana, Slovenia
                [17 ]Faculdade de Medicina de Lisboa, Lisboa, Portugal
                [18 ]National Institute of Environmental Health, Budapest, Hungary
                [19 ]Faroese Hospital System, Tórshavn, Faroe Islands
                [20 ]Institute of Public Health, University of Southern Denmark, Odense, Denmark
                [21 ]Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
                Article
                1476-069X-12-3
                10.1186/1476-069X-12-3
                3599906
                23289875
                Copyright ©2013 Bellanger et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Public health

                economic evaluation, methylmercury, neurodevelopmental deficits, prenatal exposure

                Comments

                Comment on this article