24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli.

      1
      Microbiology and molecular biology reviews : MMBR
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of a multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.

          Related collections

          Author and article information

          Journal
          Microbiol Mol Biol Rev
          Microbiology and molecular biology reviews : MMBR
          American Society for Microbiology
          1092-2172
          1092-2172
          Mar 1998
          : 62
          : 1
          Affiliations
          [1 ] Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany. joachim-volker.hoeltje@mpib-tuebingen.mpg.de
          Article
          10.1128/MMBR.62.1.181-203.1998
          98910
          9529891
          794796af-1259-4af9-b21a-8812f3ec67f4
          History

          Comments

          Comment on this article