12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Colistin is a last resort antibiotic for the treatment of carbapenem-resistant Gram negative infections. Until recently, mechanisms of colistin resistance were limited to chromosomal mutations which confer a high fitness cost and cannot be transferred between organisms. However, a novel plasmid-mediated colistin resistance mechanism, encoded by the mcr-1 gene, has been identified, and has since been detected worldwide. The mcr-1 colistin resistance mechanism is a major threat due to its lack of fitness cost and ability to be transferred between strains and species. Surveillance of colistin resistance mechanisms is critical to monitor the development and spread of resistance.This study aimed to determine the prevalence of the plasmid-mediated colistin resistance gene, mcr-1, in colistin-resistant E. coli and Klebsiella spp . isolates in the Western Cape of South Africa; and whether colistin resistance is spread through clonal expansion or by acquisition of resistance by diverse strains.

          Methods

          Colistin resistant E. coli and Klebsiella spp. isolates were collected from the NHLS microbiology laboratory at Tygerberg Hospital. Species identification and antibiotic susceptibility testing was done using the API® 20 E system and the Vitek® 2 Advanced Expert System™. PCR was used to detect the plasmid-mediated mcr-1 colistin resistance gene and REP-PCR was used for strain typing of the isolates.

          Results

          Nineteen colistin resistant isolates, including 12 E. coli, six K. pneumoniae and one K. oxytoca isolate, were detected over 7 months from eight different hospitals in the Western Cape region. The mcr-1 gene was detected in 83% of isolates which were shown to be predominantly unrelated strains.

          Conclusions

          The plasmid-mediated mcr-1 colistin resistance gene is responsible for the majority of colistin resistance in clinical isolates of E. coli and Klebsiella spp. from the Western Cape of South Africa. Colistin resistance is not clonally disseminated; the mcr-1 gene has been acquired by several unrelated strains of E. coli and K. pneumoniae. Acquisition of mcr-1 by cephalosporin- and carbapenem-resistant Gram negative bacteria may result in untreatable infections and increased mortality. Measures need to be implemented to control the use of colistin in health care facilities and in agriculture to retain its antimicrobial efficacy.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes.

          Dispersed repetitive DNA sequences have been described recently in eubacteria. To assess the distribution and evolutionary conservation of two distinct prokaryotic repetitive elements, consensus oligonucleotides were used in polymerase chain reaction [PCR] amplification and slot blot hybridization experiments with genomic DNA from diverse eubacterial species. Oligonucleotides matching Repetitive Extragenic Palindromic [REP] elements and Enterobacterial Repetitive Intergenic Consensus [ERIC] sequences were synthesized and tested as opposing PCR primers in the amplification of eubacterial genomic DNA. REP and ERIC consensus oligonucleotides produced clearly resolvable bands by agarose gel electrophoresis following PCR amplification. These band patterns provided unambiguous DNA fingerprints of different eubacterial species and strains. Both REP and ERIC probes hybridized preferentially to genomic DNA from Gram-negative enteric bacteria and related species. Widespread distribution of these repetitive DNA elements in the genomes of various microorganisms should enable rapid identification of bacterial species and strains, and be useful for the analysis of prokaryotic genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter.

            Over the past 60 years, the use of successive generations of beta-lactam antibiotics has selected successive generations of beta-lactamase enzymes, each more potent than the last. Currently, rising problems include CTX-M extended-spectrum beta-lactamases (ESBLs), plasmid-mediated AmpC beta-lactamases and KPC carbapenemases in Enterobacteriaceae, while OXA- and metallo- carbapenemases are of growing importance in Acinetobacter spp. and (less so) in other non-fermenters. Escherichia coli isolates with CTX-M ESBLs are spreading multiresistance in the community and in hospitals, while carbapenemase-producing Acinetobacter spp., mostly from intensive care, are among the most multiresistant nosocomial bacteria known and are often susceptible only to polymyxins and, potentially, tigecycline. This review discusses the epidemiology and microbiology of these resistance problems, along with possible solutions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Colistin resistance gene mcr-1 in extended-spectrum β-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany.

                Bookmark

                Author and article information

                Contributors
                maen@sun.ac.za
                17770467@sun.ac.za
                motlatji.maloba@nhls.ac.za
                awhitelaw@sun.ac.za
                Journal
                Antimicrob Resist Infect Control
                Antimicrob Resist Infect Control
                Antimicrobial Resistance and Infection Control
                BioMed Central (London )
                2047-2994
                3 August 2017
                3 August 2017
                2017
                : 6
                Affiliations
                [1 ]ISNI 0000 0001 2214 904X, GRID grid.11956.3a, Division of Medical Microbiology, Faculty of Medicine and Health Sciences, , Stellenbosch University, ; Tygerberg Cape Town, South Africa
                [2 ]ISNI 0000 0004 0635 423X, GRID grid.417371.7, National Health Laboratory Service, , Tygerberg Hospital, ; Cape Town, South Africa
                Article
                234
                10.1186/s13756-017-0234-8
                5543748
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funding
                Funded by: NHLS Research Trust
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article