52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First Observation of Time Variation in the Solar-Disk Gamma-Ray Flux with Fermi

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The solar disk is a bright gamma-ray source. Surprisingly, its flux is about one order of magnitude higher than predicted. As a first step toward understanding the physical origin of this discrepancy, we perform a new analysis in 1-100 GeV using 6 years of public Fermi-LAT data. Compared to the previous analysis by the Fermi Collaboration, who analyzed 1.5 years of data and detected the solar disk in 0.1-10 GeV, we find two new and significant results: 1. In the 1-10 GeV flux (detected at \(>5\sigma\)), we discover a significant time variation that anticorrelates with solar activity. 2. We detect gamma rays in 10- 30 GeV at \(>5\sigma\), and in 30- 100 GeV at \(> 2\sigma\). The time variation strongly indicates that solar-disk gamma rays are induced by cosmic rays and that solar atmospheric magnetic fields play an important role. Our results provide essential clues for understanding the underlying gamma-ray production processes, which may allow new probes of solar atmospheric magnetic fields, cosmic rays in the solar system, and possible new physics. Finally, we show that the Sun is a promising new target for ground-based TeV gamma-ray telescopes such as HAWC and LHAASO.

          Related collections

          Author and article information

          Comments

          Comment on this article