1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isobaric stable isotope labeling using, for example, tandem mass tags (TMTs) is increasingly being applied for large-scale proteomic studies. Experiments focusing on proteoform analysis in drug time course or perturbation studies or in large patient cohorts greatly benefit from the reproducible quantification of single peptides across samples. However, such studies often require labeling of hundreds of micrograms of peptides such that the cost for labeling reagents represents a major contribution to the overall cost of an experiment. Here, we describe and evaluate a robust and cost-effective protocol for TMT labeling that reduces the quantity of required labeling reagent by a factor of eight and achieves complete labeling. Under- and overlabeling of peptides derived from complex digests of tissues and cell lines were systematically evaluated using peptide quantities of between 12.5 and 800 μg and TMT-to-peptide ratios (wt/wt) ranging from 8:1 to 1:2 at different TMT and peptide concentrations. When reaction volumes were reduced to maintain TMT and peptide concentrations of at least 10 mm and 2 g/l, respectively, TMT-to-peptide ratios as low as 1:1 (wt/wt) resulted in labeling efficiencies of > 99% and excellent intra- and interlaboratory reproducibility. The utility of the optimized protocol was further demonstrated in a deep-scale proteome and phosphoproteome analysis of patient-derived xenograft tumor tissue benchmarked against the labeling procedure recommended by the TMT vendor. Finally, we discuss the impact of labeling reaction parameters for N-hydroxysuccinimide ester-based chemistry and provide guidance on adopting efficient labeling protocols for different peptide quantities.

          Related collections

          Author and article information

          Journal
          Molecular & Cellular Proteomics
          Mol Cell Proteomics
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1535-9476
          1535-9484
          July 01 2019
          July 2019
          July 2019
          April 09 2019
          : 18
          : 7
          : 1468-1478
          Article
          10.1074/mcp.TIR119.001385
          6601210
          30967486
          7950731c-06f5-4445-b9c0-71045c4fede0
          © 2019
          History

          Comments

          Comment on this article