3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy : Tissue surrogates for a multimodality phantom

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Errors and margins in radiotherapy.

          Clinical radiotherapy procedures aim at high accuracy. However, there are many error sources that act during treatment preparation and execution that limit the accuracy. As a consequence, a safety margin is required to ensure that the planned dose is actually delivered to the target for (almost) all patients. Before treatment planning, a planning computed tomography scan is made. In particular, motion of skin with respect to the internal anatomy limits the reproducibility of this step, introducing a systematic setup error. The second important error source is organ motion. The tumor is imaged in an arbitrary position, leading to a systematic organ motion error. The image may also be distorted because of the interference of the scanning process and organ motion. A further systematic error introduced during treatment planning is caused by the delineation process. During treatment, the most important errors are setup error and organ motion leading to day-to-day variations. There are many ways to define the margins required for these errors. In this article, an overview is given of errors in radiotherapy and margin recipes, based on physical and biological considerations. Respiration motion is treated separately.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results.

            To measure T1 and T2 relaxation times of normal human abdominal and pelvic tissues and lumbar vertebral bone marrow at 3.0 T. Relaxation time was measured in six healthy volunteers with an inversion-recovery method and different inversion times and a multiple spin-echo (SE) technique with different echo times to measure T1 and T2, respectively. Six images were acquired during one breath hold with a half-Fourier acquisition single-shot fast SE sequence. Signal intensities in regions of interest were fit to theoretical curves. Measurements were performed at 1.5 and 3.0 T. Relaxation times at 1.5 T were compared with those reported in the literature by using a one-sample t test. Differences in mean relaxation time between 1.5 and 3.0 T were analyzed with a two-sample paired t test. Relaxation times (mean +/- SD) at 3.0 T are reported for kidney cortex (T1, 1,142 msec +/- 154; T2, 76 msec +/- 7), kidney medulla (T1, 1,545 msec +/- 142; T2, 81 msec +/- 8), liver (T1, 809 msec +/- 71; T2, 34 msec +/- 4), spleen (T1, 1,328 msec +/- 31; T2, 61 msec +/- 9), pancreas (T1, 725 msec +/- 71; T2, 43 msec +/- 7), paravertebral muscle (T1, 898 msec +/- 33; T2, 29 msec +/- 4), bone marrow in L4 vertebra (T1, 586 msec +/- 73; T2, 49 msec +/- 4), subcutaneous fat (T1, 382 msec +/- 13; T2, 68 msec +/- 4), prostate (T1, 1,597 msec +/- 42; T2, 74 msec +/- 9), myometrium (T1, 1,514 msec +/- 156; T2, 79 msec +/- 10), endometrium (T1, 1,453 msec +/- 123; T2, 59 msec +/- 1), and cervix (T1, 1,616 msec +/- 61; T2, 83 msec +/- 7). On average, T1 relaxation times were 21% longer (P .05) in T1 relaxation time between the results of this study and the results of other studies for liver, kidney, spleen, and muscle tissue were found. T1 relaxation times are generally higher and T2 relaxation times are generally lower at 3.0 T than at 1.5 T, but the magnitude of change varies greatly in different tissues. Copyright RSNA, 2004
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Observations on real-time prostate gland motion using electromagnetic tracking.

              To quantify and describe the real-time movement of the prostate gland in a large data set of patients treated with radiotherapy. The Calypso four-dimensional localization system was used for target localization in 17 patients, with electromagnetic markers implanted in the prostate of each patient. We analyzed a total of 550 continuous tracking sessions. The fraction of time that the prostate was displaced by >3, >5, >7, and >10 mm was calculated for each session and patient. The frequencies of displacements after initial patient positioning were analyzed over time. Averaged over all patients, the prostate was displaced >3 and >5 mm for 13.6% and 3.3% of the total treatment time, respectively. For individual patients, the corresponding maximal values were 36.2% and 10.9%. For individual fractions, the corresponding maximal values were 98.7% and 98.6%. Displacements >3 mm were observed at 5 min after initial alignment in about one-eighth of the observations, and increased to one-quarter by 10 min. For individual patients, the maximal value of the displacements >3 mm at 5 and 10 min after initial positioning was 43% and 75%, respectively. On average, the prostate was displaced by >3 mm and >5 mm approximately 14% and 3% of the time, respectively. For individual patients, these values were up to three times greater. After the initial positioning, the likelihood of displacement of the prostate gland increased with elapsed time. This highlights the importance of initiating treatment shortly after initially positioning the patient.
                Bookmark

                Author and article information

                Journal
                Medical Physics
                Med. Phys.
                Wiley
                00942405
                February 2016
                January 25 2016
                January 25 2016
                : 43
                : 2
                : 908-916
                Article
                10.1118/1.4939874
                26843251
                7956df28-9c58-424d-8c27-1f342929c8a8
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article