20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks

      , , ,
      Mobile Information Systems
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT) in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR) and time switching two-way relay (TS-TWR) protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA-) based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Relaying Protocols for Wireless Energy Harvesting and Information Processing

              , , (2013)
              An emerging solution for prolonging the lifetime of energy constrained relay nodes in wireless networks is to avail the ambient radio-frequency (RF) signal and to simultaneously harvest energy and process information. In this paper, an amplify-and-forward (AF) relaying network is considered, where an energy constrained relay node harvests energy from the received RF signal and uses that harvested energy to forward the source information to the destination. Based on the time switching and power splitting receiver architectures, two relaying protocols, namely, i) time switching-based relaying (TSR) protocol and ii) power splitting-based relaying (PSR) protocol are proposed to enable energy harvesting and information processing at the relay. In order to determine the throughput, analytical expressions for the outage probability and the ergodic capacity are derived for delay-limited and delay-tolerant transmission modes, respectively. The numerical analysis provides practical insights into the effect of various system parameters, such as energy harvesting time, power splitting ratio, source transmission rate, source to relay distance, noise power, and energy harvesting efficiency, on the performance of wireless energy harvesting and information processing using AF relay nodes. In particular, the TSR protocol outperforms the PSR protocol in terms of throughput at relatively low signal-to-noise-ratios and high transmission rate.
                Bookmark

                Author and article information

                Journal
                Mobile Information Systems
                Mobile Information Systems
                Hindawi Limited
                1574-017X
                1875-905X
                2017
                2017
                : 2017
                :
                : 1-16
                Article
                10.1155/2017/2516035
                7959fba3-a347-42c6-8ff7-13c51f3916f9
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article