54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in Disease Pathogenesis

      review-article
      , *
      The Scientific World Journal
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Platelets are small anucleate cell fragments that circulate in blood playing crucial role in managing vascular integrity and regulating hemostasis. Platelets are also involved in the fundamental biological process of chronic inflammation associated with disease pathology. Platelet indices like mean platelets volume (MPV), platelets distributed width (PDW), and platelet crit (PCT) are useful as cheap noninvasive biomarkers for assessing the diseased states. Dynamic platelets bear distinct morphology, where α and dense granule are actively involved in secretion of molecules like GPIIb , IIIa, fibrinogen, vWf, catecholamines, serotonin, calcium, ATP, ADP, and so forth, which are involved in aggregation. Differential expressions of surface receptors like CD36, CD41, CD61 and so forth have also been quantitated in several diseases. Platelet clinical research faces challenges due to the vulnerable nature of platelet structure functions and lack of accurate assay techniques. But recent advancement in flow cytometry inputs huge progress in the field of platelets study. Platelets activation and dysfunction have been implicated in diabetes, renal diseases, tumorigenesis, Alzheimer's, and CVD. In conclusion, this paper elucidates that platelets are not that innocent as they keep showing and thus numerous novel platelet biomarkers are upcoming very soon in the field of clinical research which can be important for predicting and diagnosing disease state.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          The platelet contribution to cancer progression.

          Traditionally viewed as major cellular components in hemostasis and thrombosis, the contribution of platelets to the progression of cancer is an emerging area of research interest. Complex interactions between tumor cells and circulating platelets play an important role in cancer growth and dissemination, and a growing body of evidence supports a role for physiologic platelet receptors and platelet agonists in cancer metastases and angiogenesis. Platelets provide a procoagulant surface facilitating amplification of cancer-related coagulation, and can be recruited to shroud tumor cells, thereby shielding them from immune responses, and facilitate cancer growth and dissemination. Experimental blockade of key platelet receptors, such as GP1b/IX/V, GPIIbIIIa and GPVI, has been shown to attenuate metastases. Platelets are also recognized as dynamic reservoirs of proangiogenic and anti-angiogenic proteins that can be manipulated pharmacologically. A bidirectional relationship between platelets and tumors is also seen, with evidence of 'tumor conditioning' of platelets. The platelet as a reporter of malignancy and a targeted delivery system for anticancer therapy has also been proposed. The development of platelet inhibitors that influence malignancy progression and clinical testing of currently available antiplatelet drugs represents a promising area of targeted cancer therapy. © 2011 International Society on Thrombosis and Haemostasis.
            • Record: found
            • Abstract: not found
            • Article: not found

            THE AGGREGATION OF BLOOD PLATELETS.

              • Record: found
              • Abstract: found
              • Article: not found

              Activation of platelet function through G protein-coupled receptors.

              Because of their ability to become rapidly activated at places of vascular injury, platelets are important players in primary hemostasis as well as in arterial thrombosis. In addition, they are also involved in chronic pathological processes including the atherosclerotic remodeling of the vascular system. Although primary adhesion of platelets to the vessel wall is largely independent of G protein-mediated signaling, the subsequent recruitment of additional platelets into a growing platelet thrombus requires mediators such as ADP, thromboxane A(2), or thrombin, which act through G protein-coupled receptors. Platelet activation via G protein-coupled receptors involves 3 major G protein-mediated signaling pathways that are initiated by the activation of the G proteins G(q), G(13), and G(i). This review summarizes recent progress in understanding the mechanisms underlying platelet activation and thrombus extension via G protein-mediated signaling pathways.

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi Publishing Corporation
                1537-744X
                2014
                3 March 2014
                : 2014
                : 781857
                Affiliations
                Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
                Author notes
                *Maitree Bhattacharyya: bmaitree@ 123456gmail.com

                Academic Editors: E. J. Benz, L. Olcay, and M. de F. Sonati

                Author information
                http://orcid.org/0000-0003-2467-3288
                Article
                10.1155/2014/781857
                3960550
                24729754
                795b04b3-2965-4629-a08c-d421c5000d50
                Copyright © 2014 K. Ghoshal and M. Bhattacharyya.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 August 2013
                : 10 November 2013
                Categories
                Review Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log