Yersinia enterocolitica is an important zoonotic pathogen that can cause yersiniosis in humans and animals. Food has been suggested to be the main source of yersiniosis. It is critical for the researchers to be able to detect Yersinia or any other foodborne pathogen with increased sensitivity and specificity, as well as in real-time, in the case of a foodborne disease outbreak. Conventional detection methods are known to be labor intensive, time consuming, or expensive. On the other hand, more sensitive molecular-based detection methods like next generation sequencing, microarray, and many others are capable of providing faster results. DNA testing is now possible on a single molecule, and high-throughput analysis allows multiple detection reactions to be performed at once, thus allowing a range of characteristics to be rapidly and simultaneously determined. Despite better detection efficiencies, results derived using molecular biology methods can be affected by the various food matrixes. With the improvements in sample preparation, data analysis, and testing procedures, molecular detection techniques will likely continue to simplify and increase the speed of detection while simultaneously improving the sensitivity and specificity for tracking pathogens in food matrices.