31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.

          Author summary

          Brugia malayi is a parasitic nematode and etiological agent of Lymphatic Filariasis (LF), a mosquito-borne Neglected Tropical Disease affecting approximately 120 million people globally. Brugia and other parasitic nematodes have the ability to modulate host biology and evade the immune response but the mechanisms by which they do this are unclear. One possibility is via immunomodulatory proteins and small RNAs packaged and released in extracellular vesicles (EV) that target host cells. Here we show that all Brugia life stages relevant to human infection release EVs that are internalized by murine macrophages. These EVs contain immunomodulatory proteins and show sex-specific differences in cargo providing insight into how B. malayi establishes and maintains infection. Critically, we show ivermectin, a drug used to treat LF and related diseases affects EV release, which provides new insight into how these drugs work and identifies a new screening paradigm to help identify future anti-parasitic drugs.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.

          Exosomes are 40-100nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40-100nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2-8, EPHB1-4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomal microRNA: a diagnostic marker for lung cancer.

            To date, there is no screening test for lung cancer shown to affect overall mortality. MicroRNAs (miRNAs) are a class of small noncoding RNA genes found to be abnormally expressed in several types of cancer, suggesting a role in the pathogenesis of human cancer. We evaluated the circulating levels of tumor exosomes, exosomal small RNA, and specific exosomal miRNAs in patients with and without lung adenocarcinoma, correlating the levels with the American Joint Committee on Cancer (AJCC) disease stage to validate it as an acceptable marker for diagnosis and prognosis in patients with adenocarcinoma of the lung. To date, 27 patients with lung adenocarcinoma AJCC stages I-IV and 9 controls, all aged 21-80 years, were enrolled in the study. Small RNA was detected in the circulating exosomes. The mean exosome concentration was 2.85 mg/mL (95% CI, 1.94-3.76) for the lung adenocarcinoma group versus 0.77 mg/mL (95% CI, 0.68-0.86) for the control group (P < .001). The mean miRNA concentration was 158.6 ng/mL (95% CI, 145.7-171.5) for the lung adenocarcinoma group versus 68.1 ng/mL (95% CI, 57.2-78.9) for the control group (P < .001). Comparisons between peripheral circulation miRNA-derived exosomes and miRNA-derived tumors indicated that the miRNA signatures were not significantly different. The significant difference in total exosome and miRNA levels between lung cancer patients and controls, and the similarity between the circulating exosomal miRNA and the tumor-derived miRNA patterns, suggest that circulating exosomal miRNA might be useful as a screening test for lung adenocarcinoma. No correlation between the exosomal miRNA levels and the stage of disease can be made at this point.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune regulation by helminth parasites: cellular and molecular mechanisms.

              Immunology was founded by studying the body's response to infectious microorganisms, and yet microbial prokaryotes only tell half the story of the immune system. Eukaryotic pathogens--protozoa, helminths, fungi and ectoparasites--have all been powerful selective forces for immune evolution. Often, as with lethal protozoal parasites, the focus has been on acute infections and the inflammatory responses they evoke. Long-lived parasites such as the helminths, however, are more remarkable for their ability to downregulate host immunity, protecting themselves from elimination and minimizing severe pathology in the host.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: InvestigationRole: Writing – original draft
                Role: Data curationRole: InvestigationRole: Writing – review & editing
                Role: Investigation
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                16 April 2018
                April 2018
                : 12
                : 4
                : e0006438
                Affiliations
                [1 ] Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
                [2 ] Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                McGill University, CANADA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-2030-4194
                http://orcid.org/0000-0002-4715-9313
                Article
                PNTD-D-18-00030
                10.1371/journal.pntd.0006438
                5919703
                29659599
                79664209-7a58-4958-bdb9-4f126105e831
                © 2018 Harischandra et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 January 2018
                : 10 April 2018
                Page count
                Figures: 8, Tables: 1, Pages: 25
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: AI117204
                Award Recipient :
                This work was funded by an R21 award (AI117204) to MJK and a K22 award (AI125473) to MZ by the National Institute of Allergy and Infectious Diseases ( www.niaid.nih.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Brugia
                Brugia Malayi
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Brugia
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Gene Ontologies
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Gene Ontologies
                Biology and Life Sciences
                Biochemistry
                Proteins
                Proteomes
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Exosomes
                Medicine and Health Sciences
                Parasitic Diseases
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-04-26
                All relevant data are within the paper and its supporting information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article