5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rationale and clinical utility of the darunavir–cobicistat combination in the treatment of HIV/AIDS

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article is to provide an update overview of cobicistat (COBI)-boosted darunavir in response to its recent approval by the US Food and Drug Administration, and inclusion as an alternative first-line regime in the 2015 treatment guidelines in the US. COBI is a relatively new non-antiretroviral cytochrome P450 3A inhibitor or pharmacoenhancer. The rationale behind COBI development was to provide an alternative to ritonavir (RTV) as a protease inhibitor pharmacoenhancer, due to associated adverse events with short- and long-term RTV use, such as gastrointestinal intolerability, drug–drug interactions, insulin resistance, lipodystrophy, and hyperlipidemia. Although in vitro studies suggest that COBI may result in a lower incidence of undesired drug–drug interactions and lipid-associated disorders than RTV, not all Phase III studies have well addressed these issues, and the data are limited. However, Phase III studies have demonstrated tolerability, noninferiority, and bioequivalence of COBI compared to RTV. Two main advantages of COBI over RTV-containing regimes have been noted as follows: 1) COBI has no anti-HIV activity; therefore, resistance to COBI as a booster in addition to protease inhibitor resistance is of little concern, allowing for COBI-containing regimes in future. 2) COBI’s solubility and dissolution rate allow for co-formulated/fixed-dose combination products. Nonetheless, prior to initiating COBI-containing treatment regimens, the following should be considered: 1) COBI may increase serum creatinine levels and reduce estimated glomerular filtration rate (GFR) without affecting actual GFR; 2) potential drug–drug interaction data are insufficient, warranting caution when initiating COBI in conjunction with concomitant medication or in individuals with multiple comorbidities; 3) food plays a pivotal role in boosting darunavir exposure, warranting caution and patient education on the importance of taking COBI-containing regimens with appropriate amounts of food; and 4) data on the success of COBI-containing regimens in treatment-experienced patients are limited.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          Active human immunodeficiency virus protease is required for viral infectivity.

           E Scolnick,  I Sigal,  E Emini (1988)
          Retroviral proteins are synthesized as polyprotein precursors that undergo proteolytic cleavages to yield the mature viral proteins. The role of the human immunodeficiency virus (HIV) protease in the viral replication cycle was examined by use of a site-directed mutation in the protease gene. The HIV protease gene product was expressed in Escherichia coli and observed to cleave HIV gag p55 to gag p24 and gag p17 in vitro. Substitution of aspartic acid residue 25 (Asp-25) of this protein with an asparagine residue did not affect the expression of the protein, but it eliminated detectable in vitro proteolytic activity against HIV gag p55. A mutant HIV provirus was constructed that contained the Asn-25 mutation within the protease gene. SW480 human colon carcinoma cells transfected with the Asn-25 mutant proviral DNA produced virions that contained gag p55 but not gag p24, whereas virions from cells transfected with the wild-type DNA contained both gag p55 and gag p24. The mutant virions were not able to infect MT-4 lymphoid cells. In contrast, these cells were highly sensitive to infection by the wild-type virions. These results demonstrate that the HIV protease is an essential viral enzyme and, consequently, an attractive target for anti-HIV drugs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Development of antiretroviral drug resistance.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current status and challenges of antiretroviral research and therapy.

              Twenty-five years after the discovery of the therapeutic activity of azidothymidine (AZT), the first antiretroviral drug used in the clinic, infection with the human immunodeficiency virus (HIV) has become, at least in the industrialized world, a manageable chronic disease with a significant improvement in life expectancy and quality. Nevertheless, the number of new infections worldwide continues to rise, particularly in women, and effective drug treatments have not yet reached the vast majority of infected individuals in resource-limited countries. The current status of antiretroviral therapy is therefore encouraging, but significant challenges remain. Although highly active antiretroviral therapy (HAART) provides durable control of virus replication in many patients, it is not devoid of unwanted secondary effects, some of which are now surfacing in aging populations under long-term treatment. The emergence of multidrug resistance and transmission of drug-resistant HIV strains limit the clinical efficacy of current therapy. Further simplification of treatment and identification of more effective drug combinations are needed to improve patient adherence, the most significant cause of treatment failure. Finding new drugs and novel drug targets may lead to redefining the goals of antiretroviral therapy, with an attempt to achieve the ultimate objective: the eradication of infection. Preclinical and clinical biomedical research, rational drug design and a close collaboration with regulatory agencies to set standards for the transition of new treatment concepts into the clinic will be the cornerstones of future progress. This special issue of Antiviral Research [85(1), 2010] highlights the principal milestones of antiretroviral research over 25 years of drug discovery and development and offers a comprehensive analysis by leading experts of the efforts being made to meet the challenges of effective control of HIV infection. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                23 October 2015
                : 9
                : 5763-5769
                Affiliations
                [1 ]Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
                [2 ]The HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, The Thai Red Cross AIDS Research Center, Bangkok, Thailand
                Author notes
                Correspondence: Kiat Ruxrungtham, The HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, The Thai Red Cross AIDS Research Center, 104 Rajdumri Road, Pathumwan, Bangkok 10330, Thailand, Tel +66 2 255 7335, Fax +66 2 252 5779, Email rkiat@ 123456chula.ac.th
                Article
                dddt-9-5763
                10.2147/DDDT.S63989
                4627402
                © 2015 Putcharoen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article