6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel 18F-Label Radioligand PET

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: It has been confirmed that the α7-nicotinic acetylcholine receptor (α7nAChR) is an important target for identifying vulnerable atherosclerotic plaques. Previously, we successfully designed and synthesized a series of 18F-labeled PET molecular probes targeting α7nAChR, which are mainly used in the diagnosis of Alzheimer's disease. Based on the characteristics of α7nAChR in blood vessels, we have firstly screened for a suitable novel 18F-labeled PET molecular probe ([ 18F]YLF-DW), with high selectivity for α7nAChR over α4β2nAChR and a good effect for the imaging of atherosclerotic animal models, to effectively identify vulnerable atherosclerotic plaques at an early stage. Meanwhile, we compared it with the “gold standard” pathological examination of atherosclerosis, to verify the reliability of [ 18F]YLF-DW in early diagnosis of atherosclerosis.

          Methods: The vulnerable atherosclerotic plaques model of ApoE-/-mice were successfully established. Then based on the methods of 3D-QSAR and molecular docking, we designed oxazolo[4,5-b] pyridines and fluorenone compounds, which are targeted at α7nAChR. Through further screening, a novel alpha7 nicotinic acetylcholine receptor radioligand ([ 18F]YLF-DW) was synthesized and automatically 18F-labeled using a Stynthra RNplus module. Subsequently, we employed [ 18F]YLF-DW for the targeting of α7nAChR in atherosclerotic plaques and control group, using a micro-PET/CT respectively. After imaging, the mice were sacrificed by air embolism and the carotid arteries taken out for making circular sections. The paraffin embedded specimens were sectioned with 5 μm thickness and stained with oil red. After staining, immunohistochemistry experiment was carried out to verify the effect of micro-PET/CT imaging.

          Results: The micro-PET/CT imaging successfully identified the vulnerable atherosclerotic plaques in the carotid arteries of ApoE-/-mice; whereas, no signal was observed in normal control mice. In addition, compared with the traditional imaging agent [ 18F]FDG, [ 18F]YLF-DW had a significant effect on the early plaques imaging of carotid atherosclerosis. The results of oil red staining and immunohistochemistry also showed early formations of carotid plaques in ApoE-/-mice and provided pathological bases for the evaluation of imaging effect.

          Conclusion: We innovated to apply the novel molecular probe ([ 18F]YLF-DW) to the identification of vulnerable atherosclerotic plaques in carotid arteries, to detect atherosclerosis early inflammatory response and provide powerful input for the early diagnosis of atherosclerotic lesions, which may play an early warning role in cardiovascular acute events.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Heart Disease and Stroke Statistics—2016 Update

          Circulation, 133(4)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation in atherosclerosis.

            Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.

              Subtypes of neuronal nicotinic acetylcholine receptors (nAChRs) are constructed from numerous subunit combinations that compose channel-receptor complexes with varied functional and pharmacological characteristics. Structural and functional diversity and the broad presynaptic, postsynaptic, and nonsynaptic locations of nAChRs underlie their mainly modulatory roles throughout the mammalian brain. Presynaptic and preterminal nicotinic receptors enhance neurotransmitter release, postsynaptic nAChRs contribute a small minority of fast excitatory transmission, and nonsynaptic nAChRs modulate many neurotransmitter systems by influencing neuronal excitability. Nicotinic receptors have roles in development and synaptic plasticity, and nicotinic mechanisms participate in learning, memory, and attention. Decline, disruption, or alterations of nicotinic cholinergic mechanisms contribute to dysfunctions such as epilepsy, schizophrenia, Parkinson's disease, autism, dementia with Lewy bodies, Alzheimer's disease, and addiction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                12 March 2021
                2021
                : 9
                : 640037
                Affiliations
                [1] 1State Key Laboratory of Cardiovascular Disease, Department of Nuclear Medicine, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
                [2] 2Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
                [3] 3Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University , Beijing, China
                Author notes

                Edited by: Jianxun Ding, Chinese Academy of Sciences, China

                Reviewed by: Xing Yang, Peking University First Hospital, China; Wenliang Li, Jilin Medical University, China

                *Correspondence: Zuo-Xiang He zuoxianghe@ 123456hotmail.com

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2021.640037
                7994753
                33777911
                7985aa93-44c0-4c93-b144-49d60468074f
                Copyright © 2021 Wang, Yao, Wang, Zhang and He.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 December 2020
                : 14 January 2021
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 47, Pages: 10, Words: 5677
                Categories
                Bioengineering and Biotechnology
                Original Research

                vulnerable atherosclerotic plaques,apoe-/-mice,α7-nicotinic acetylcholine receptor,18 f-labeled,pet imaging agent

                Comments

                Comment on this article