6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Developmental changes in the structure and function of the central olfactory system in gregarious and solitary desert locusts.

      1 , ,
      Microscopy research and technique

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Desert locusts are guided by olfactory cues in different behavioural contexts. In order to understand the basis for the variable olfactory guided behaviour displayed by different developmental stages and by solitary and gregarious locusts, we investigated their central olfactory system with neuroanatomical and neurophysiological methods. The primary olfactory centre of the brain, the antennal lobe (AL), increases in size during development due to an increased number and size of glomeruli. These glomeruli are innervated by a constant number of projection neurons that display increased dendritic arborizations during the development of the locust. The anatomical parameters do not differ between gregarious and solitary locusts. In parallel with the observed neuroanatomical changes, neurophysiological changes in response spectra and response specificity of AL neurons were found. During development, the percentage of neurons responding specifically to aggregation pheromone components decreases, whereas an increase in both pheromone-generalists and plant-pheromone generalist neurons is observed. The percentage of neurons responding to green leaf volatiles, however, remains constant. A decrease in the number of nymph blend-specific neurons was also observed. Our data show that anatomical and physiological properties of the AL and its neurons to a large extent reflect the changes in olfactory guided behaviour during development and between phases. The majority of our results are also in accordance with findings that the number of olfactory receptor neurons increases during development, resulting in increasing convergence on AL neurons.

          Related collections

          Author and article information

          Journal
          Microsc. Res. Tech.
          Microscopy research and technique
          1059-910X
          1059-910X
          Feb 15 2002
          : 56
          : 4
          Affiliations
          [1 ] Department of Ecology, Lund University, S-223 62 Lund, Sweden. sylvia.anton@vv.slu.se
          Article
          10.1002/jemt.10032
          10.1002/jemt.10032
          11877803
          7994ef28-365b-43e5-80c4-3950196f91f7
          Copyright 2002 Wiley-Liss, Inc.
          History

          Comments

          Comment on this article