4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomes Carrying MicroRNA-155 Target Forkhead Box O3 of Endothelial Cells and Promote Angiogenesis in Gastric Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastric cancer (GC) has a poor prognosis due to its relentless proliferation and metastasis. One of the reasons for this plight is the formidable angiogenesis ability of GC. Considering the important role of cancer exosomes as carriers and communicators in the tumor microenvironment, we explored the role of exosome-microRNA (miRNA) in regulating angiogenesis. Western blotting and quantitative real-time PCR were used to measure the protein and mRNA levels of the miRNA target gene. To detect changes in cellular biological functions, we pretreated human umbilical vein endothelial cells (HUVECs) that were severally cocultured with GC-derived exosomes and transfected them with different miRNAs directly. Also, we used the mouse xenograft model to verify the effect of miR-155 on angiogenesis of GC tissues in vivo. Our study confirmed that miR-155, as a driver of angiogenesis, encapsulated by exosomes from GC can enhance the generation of new vessels for GC in vitro through inhibiting the expression of Forkhead box O3 (FOXO3a) protein, which led to the progression of GC. Therefore, miR-155 is probable to become a potential biomarker for the detection of migration and angiogenesis of GC, and serves as a novel target for anti-angiogenesis therapy.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome mediated communication within the tumor microenvironment.

          It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and discuss the therapeutic manipulation of exosomal content for cancer treatment including current clinical trials of exosomal therapeutics. Often referred to as cellular nanoparticles, understanding exosomes, and how cancer cells use these cellular nanoparticles in communication is at the cutting edge frontier of advancing cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Biology of Cancer Exosomes: Insights and New Perspectives.

            Exosomes are a subclass of extracellular vesicles involved in intercellular communication that are released by all cell types, including cancer cells. Cancer exosomes carry malignant information in the form of proteins, lipids, and nucleic acids that can reprogram recipient cells. Exosomes have emerged as putative biological mediators in cancer contributing to major steps of disease progression. A leading role exists for cancer exosomes in specific aspects of tumor progression: modulation of immune response, tumor microenvironment reprogramming, and metastasis. This review will address the functions attributed to cancer exosomes in these three aspects of cancer biology, highlighting recent advances and potential limitations. Finally, we explore alternative strategies to develop better models to study cancer exosomes biology.Cancer Res; 77(23); 6480-8. ©2017 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characteristics of gastric cancer in Asia.

              Gastric cancer (GC) is the fourth most common cancer in the world with more than 70% of cases occur in the developing world. More than 50% of cases occur in Eastern Asia. GC is the second leading cause of cancer death in both sexes worldwide. In Asia, GC is the third most common cancer after breast and lung and is the second most common cause of cancer death after lung cancer. Although the incidence and mortality rates are slowly declining in many countries of Asia, GC still remains a significant public health problem. The incidence and mortality varies according to the geographic area in Asia. These variations are closely related to the prevalence of GC risk factors; especially Helicobacter pylori (H. pylori) and its molecular virulent characteristics. The gradual and consistent improvements in socioeconomic conditions in Asia have lowered the H. pylori seroprevalence rates leading to a reduction in the GC incidence. However, GC remains a significant public health and an economic burden in Asia. There has been no recent systemic review of GC incidence, mortality, and H. pylori molecular epidemiology in Asia. The aim of this report is to review the GC incidence, mortality, and linkage to H. pylori in Asia.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Oncolytics
                Mol Ther Oncolytics
                Molecular Therapy Oncolytics
                American Society of Gene & Cell Therapy
                2372-7705
                31 October 2019
                20 December 2019
                31 October 2019
                : 15
                : 223-233
                Affiliations
                [1 ]Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
                Author notes
                []Corresponding author: Yi Ba, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China. bayi@ 123456tjmuch.com
                [∗∗ ]Corresponding author: Guoguang Ying, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China. yingguoguang163@ 123456163.com
                [2]

                These authors contributed equally to this work.

                Article
                S2372-7705(19)30096-8
                10.1016/j.omto.2019.10.006
                6889542
                31828217
                7998b40a-44cf-4bb7-8f6c-43fb04bb0710
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 8 October 2019
                : 22 October 2019
                Categories
                Article

                gastric cancer,gc,exosomes,mir-155,foxo3a,angiogenesis
                gastric cancer, gc, exosomes, mir-155, foxo3a, angiogenesis

                Comments

                Comment on this article