200
views
0
recommends
+1 Recommend
2 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Cross‐species transmission of the newly identified coronavirus 2019‐nCoV

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current outbreak of viral pneumonia in the city of Wuhan, China, was caused by a novel coronavirus designated 2019‐nCoV by the World Health Organization, as determined by sequencing the viral RNA genome. Many initial patients were exposed to wildlife animals at the Huanan seafood wholesale market, where poultry, snake, bats, and other farm animals were also sold. To investigate possible virus reservoir, we have carried out comprehensive sequence analysis and comparison in conjunction with relative synonymous codon usage (RSCU) bias among different animal species based on the 2019‐nCoV sequence. Results obtained from our analyses suggest that the 2019‐nCoV may appear to be a recombinant virus between the bat coronavirus and an origin‐unknown coronavirus. The recombination may occurred within the viral spike glycoprotein, which recognizes a cell surface receptor. Additionally, our findings suggest that 2019‐nCoV has most similar genetic information with bat coronovirus and most similar codon usage bias with snake. Taken together, our results suggest that homologous recombination may occur and contribute to the 2019‐nCoV cross‐species transmission.

          Research Highlights

          • Taken together, our results suggest that homologous recombination may occur and contribute to the 2019‐nCoV cross‐species transmission.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle

          Since December 2019, a total of 41 cases of pneumonia of unknown etiology have been confirmed in Wuhan city, Hubei Province, China. Wuhan city is a major transportation hub with a population of more than 11 million people. Most of the patients visited a local fish and wild animal market last month. At a national press conference held today, Dr Jianguo Xu, an academician of the Chinese Academy of Engineering, who led a scientific team announced that a new‐type coronavirus, tentatively named by World Health Organization as the 2019‐new coronavirus (2019‐nCoV), had caused this outbreak. 1 The 2019‐nCoV has a different coronavirus‐specific nucleic acid sequence from known human coronavirus species, which are similar to some of the beta coronaviruses identified in bats. 2 , 3 The virus‐specific nucleic acid sequences were detected in lung fluid, blood and throat swab samples in 15 patients and the virus that was isolated showed a typical coronavirus appearance under electron microscopy. Further research will be conducted to better understand the new coronavirus to develop antiviral agents and vaccines. 4 We applauded the excellent job that has been done so far. The infection was first described in December. Within 9 days, a special team consisted of physicians, scientists and epidemiologists who ruled out several extremely contagious pathogens including SARS, which killed hundreds of people more than a decade ago, and MERS. This has surely alleviated environmental concerns as Hong Kong authorities had quickly stepped up the disinfection of trains and airplanes and checks of passengers due to this outbreak. Most of the patients visited the fish and wild animal market last month in Wuhan. This fish and wild animal market also sold live animals such as poultry, bats, marmots, and snakes. All patients received prompt supportive treatment in quarantine. Among them, seven patients were in serious condition and one patient died. All of the 42 patients so far confirmed were from China except one Thailand patient who was a traveler from Wuhan. Eight patients have been cured of the disease and were discharged from the hospital last week. The 2019‐nCoV now have been isolated from multiple patients and appears to be the culprit. But the mystery has not been completely solved yet. Until there is a formal published scientific manuscript, the facts can be argued, particularly regarding causality despite these facts having been officially announced. The data collected so far is not enough to confirm the causal relationship between the new‐type coronavirus and the respiratory disease based on classical Koch's postulates or modified ones as suggested by Fredricks and Relman. 5 The viral‐specific nucleic acids were only discovered in 15 patients, and successful virus culture was extremely limited to only a few patients. There remains considerable work to be done to differentiate between colonization, shedding, and infection. Additional strains of the 2019‐nCoV need to be isolated to study their homologies. It is expected that antigens and monoclonal antibodies will be developed so serology can be used to confirm previous and acute infection status. The episode demonstrates further the need for rapid and accurate detection and identification methods that can be used in the local hospitals and clinics bearing the burden of identifying and treating patients. Recently, the Clinical Laboratory Improvement Amendments (CLIA) of 1988 has waived highly sensitive and specific molecular devices known as CLIA‐waived devices so that these devices are gradually becoming available for point of care testing. Finally, the epidemiological similarity between this outbreak and that of SARS in 2002‐2003 6 is striking. SARS was then traced to animal markets 7 and eventually to palm civets. 8 Later bats were identified as animal reservoirs. 9 Could this novel coronavirus be originated from wild animals? The family Coronaviridae includes two subfamilies. 10 One, the subfamily Coronavirinae, contains a substantial number of pathogens of mammals that individually cause a remarkable variety of diseases, including pneumonia. In humans, coronaviruses are among the spectrum of viruses that cause the common cold as well as more severe respiratory disease—specifically SARS and MERS, which are both zoonoses. The second subfamily, Torovirinae, contains pathogens of both terrestrial and aquatic animals. The genus Torovirus includes the type species, equine torovirus (Berne virus), which was first isolated from a horse with diarrhea, and the Breda virus, which was first isolated from neonatal calves with diarrhea. White bream virus from fish is the type species of the genus Bafinivirus. However, there is no evidence so far that the seafood from the fish and animal market caused 2019‐nCoV‐associated pneumonia. This epidemiologic similarity clearly provides a starting point for the further investigation of this outbreak. In the meantime, this fish and animal market has been closed until the epidemiological work determines the animal host of this novel coronavirus. Only then will the miracle be complete.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.

            Y Guan (2003)
            A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination.

              The development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine is likely to depend on knowledge of circulating variants of genes other than the commonly sequenced gag and env genes. In addition, full-genome data are particularly limited for HIV-1 subtype C, currently the most commonly transmitted subtype in India and worldwide. Likewise, little is known about sequence variation of HIV-1 in India, the country facing the largest burden of HIV worldwide. Therefore, the objective of this study was to clone and characterize the complete genome of HIV-1 from seroconverters infected with subtype C variants in India. Cocultured HIV-1 isolates were obtained from six seroincident individuals from Pune, India, and virtually full-length HIV-1 genomes were amplified, cloned, and sequenced from each. Sequence analysis revealed that five of the six genomes were of subtype C, while one was a mosaic of subtypes A and C, with multiple breakpoints in env, nef, and the 3' long terminal repeat as determined by both maximal chi2 analysis and phylogenetic bootstrapping. Sequences were compared for preservation of known cytotoxic T lymphocyte (CTL) epitopes. Compared with those of the HIV-1LAI sequence, 38% of well-defined CTL epitopes were identical. The proportion of nonconservative substitutions for Env, at 61%, was higher (P < 0.001) than those for Gag (24%), Pol (18%), and Nef (32%). Therefore, characterized CTL epitopes demonstrated substantial differences from subtype B laboratory strains, which were most pronounced in Env. Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.
                Bookmark

                Author and article information

                Contributors
                j102938@126.com
                Journal
                J Med Virol
                J. Med. Virol
                10.1002/(ISSN)1096-9071
                JMV
                Journal of Medical Virology
                John Wiley and Sons Inc. (Hoboken )
                0146-6615
                1096-9071
                19 February 2020
                April 2020
                : 92
                : 4 , 2019 Novel Coronavirus Origin, Evolution, Disease, Biology and Epidemiology: Part‐I ( doiID: 10.1002/jmv.v92.4 )
                : 433-440
                Affiliations
                [ 1 ] Department of Microbiology Peking University Health Science Center School of Basic Medical Sciences Beijing China
                [ 2 ] Department of Spleen and Stomach Diseases The First affiliated Hospital of Guangxi University of Chinese Medicine Nanning China
                [ 3 ] Department of Science and Technology Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine Nanning China
                [ 4 ] Immunology Innovation Team, School of Medicine Ningbo University Ningbo China
                [ 5 ] Hubei Engineering Research Center of Viral Vector Wuhan University of Bioengineering Wuhan China
                Author notes
                [*] [* ] Correspondence Wei Ji, Department of Microbiology, Peking University Health Science Center School of Basic Medical Sciences, Beijing, China.

                Email: j102938@ 123456126.com

                Author information
                http://orcid.org/0000-0002-0818-5578
                Article
                JMV25682
                10.1002/jmv.25682
                7138088
                31967321
                799c921d-e5d2-436f-993c-a7d56b094274
                © 2020 Wiley Periodicals, Inc.

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 17 January 2020
                : 21 January 2020
                Page count
                Figures: 4, Tables: 1, Pages: 8, Words: 3990
                Funding
                Funded by: Project of Guangxi Health Committee
                Award ID: Z20191111
                Funded by: Natural Science Foundation of Guangxi Province of China , open-funder-registry 10.13039/501100004607;
                Award ID: 2017GXNSFAA198080
                Funded by: K.C. Wong Magna Fund
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.9 mode:remove_FC converted:06.04.2020

                Microbiology & Virology
                2019‐ncov,codon usage bias,cross‐species transmission,phylogenetic analysis,recombination

                Comments

                Comment on this article