53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Restitution slope is principally determined by steady-state action potential duration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF.

          Methods and results

          Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope.

          Conclusion(s)

          Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          A graphic method for the study of alternation in cardiac action potentials.

            • Record: found
            • Abstract: found
            • Article: not found

            Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart.

            Abnormal autonomic nerve activity is a strong prognostic marker for ventricular arrhythmias but the mechanisms underlying the autonomic modulation of ventricular fibrillation (VF) initiation are poorly understood. We examined the effects of direct sympathetic (SS) and vagus (VS) nerve stimulation on electrical restitution, alternans and VF threshold (VFT) in a novel isolated rabbit heart preparation with intact dual autonomic innervation. Monophasic Action Potentials (MAPs) were recorded from a left ventricular epicardial site on innervated, isolated rabbit hearts (n=16). Standard restitution, effective refractory period (ERP), electrical alternans and VFT were measured at baseline and during SS and VS separately. The restitution curve was shifted downwards and made steeper with SS whilst VS caused an upward shift and a flattening of the curve. The maximum slope of restitution was increased from 1.30+/-0.10 at baseline to 1.86+/-0.17 (by 45+/-12%, P<0.01) with SS and decreased to 0.69+/-0.10 (by 51+/-6%, P<0.001) with VS. ERP was decreased from 127.3+/-2.5 ms to 111.8+/-1.8 ms with SS (by 12+/-2%, P<0.001) and increased to 144.0+/-2.2 ms with VS (by 13+/-2%, P<0.001). VFT was decreased from 4.7+/-0.6 mA to 1.9+/-0.5 mA with SS (by 64+/-5%, P<0.001) and increased to 8.7+/-1.1 mA with VS (by 89+/-14%, P<0.0005). There was a significant inverse relationship between the maximum slope of restitution and VFT (r=-0.63, P<0.0001). When compared with baseline, SS caused electrical alternans at longer pacing cycle lengths (139.0+/-8.4 vs. 123.0+/-7.8 ms, P<0.01) with greater degree of alternans (32.5+/-9.9 vs. 15.4+/-3.2%, P<0.05). It also caused a wider range of cycle lengths where alternans occurred (53.0+/-6.2 vs. 41.0+/-7.0 ms, P<0.05) whilst vagus nerve stimulation shortened this range (33.0+/-7.3 ms, P<0.001). Sympathetic stimulation increased maximum slope of restitution and electrical alternans but decreased ERP and VF threshold whilst vagus nerve stimulation had opposite effects. The interaction between action potential duration and beat-to-beat interval may play an important role in the autonomic modulation of VF initiation.
              • Record: found
              • Abstract: found
              • Article: not found

              Dispersion of repolarization and arrhythmogenesis.

              The relation between induction of arrhythmias and dispersion of repolarization is not completely understood. The purpose of this study was to study the relation between heterogeneity in repolarization and arrhythmogenesis under conditions of selective regional action potential prolongation and shortening. Pig hearts were perfused in a Langendorff setup. The left anterior descending artery (LAD) was cannulated and perfused. Sotalol (220 microM) was infused in the aortic cannula, and pinacidil (20 microM) was infused through the LAD, causing a gradient in repolarization time between the two myocardial regions. Premature stimulation was performed from the LAD region. No transmural repolarization gradients developed after infusion of the drugs. High-density epicardial activation/repolarization mapping (176 unipolar electrodes, 2-mm interelectrode spacing) revealed a maximum repolarization gradient of approximately 120 ms over 14 mm. The critical parameter for differentiating between the occurrence of reentry and the mere occurrence of a line of activation block between the two myocardial regions (and no reentry) was not the magnitude of the repolarization gradient but the timing of arrival of the premature activation wave at the distal side of the line of activation block relative to the repolarization time of the premature beat proximal to the line of block. No spontaneous arrhythmias were observed despite the presence of the repolarization gradient. It is not the repolarization gradient but the restitution characteristics of the tissue with the shorter action potential, in combination with the time of arrival of the premature wavefront at the distal side of the line of block, that determines the occurrence of reentry.

                Author and article information

                Journal
                Cardiovasc Res
                Cardiovasc. Res
                cardiovascres
                Cardiovascular Research
                Oxford University Press
                0008-6363
                1755-3245
                01 June 2017
                23 March 2017
                23 March 2017
                : 113
                : 7
                : 817-828
                Affiliations
                [1 ]Cardiovascular Division, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK;
                [2 ]NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
                [3 ]Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
                [4 ]Biomedical Engineering, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK
                Author notes
                [* ] Corresponding author. Cardiovascular Division, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK. Tel: +44 0 20 7188 8351, E-mail: james.winter@ 123456kcl.ac.uk

                Time for primary review: 66 days

                Article
                cvx063
                10.1093/cvr/cvx063
                5437364
                28371805
                799eb311-bb31-4ecb-98da-934e7faadfb8
                © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 November 2016
                : 23 February 2017
                : 22 March 2017
                Page count
                Pages: 12
                Funding
                Funded by: British Heart Foundation
                Award ID: (FS/16/35/31952), M.J.S. (RG/12/4/29426)
                Categories
                Original Articles
                Ion Channels and Arrhythmias
                Editor's Choice

                Cardiovascular Medicine
                action potential duration,electrical restitution,restitution,cardiac memory

                Comments

                Comment on this article

                Related Documents Log