28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Therapieempfehlungen in Pandemiezeiten: Richtig (be‑)handeln unter Handlungsdruck Translated title: Recommendations for therapy in pandemic times: Acting (and treating) correctly under pressure to act

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Originalpublikation Schmitz A (2020) Kommentar: Gefahr der COVID-19-Ansteckung durch Medikamentenvernebelung. Notfall Rettungsmed. 10.1007/s10049-020-00710-x Leserbrief Clemens J (2020) Gefahr der Medikamentenverneblung bei COVID-19: viel Rauch um nichts? Notfall Rettungsmed. 10.1007/s10049-020-00738-z Die SARS-CoV-2-Pandemie ist ein Jahrhundertereignis von historischer Tragweite. Während noch am Anfang des Jahres kaum absehbar war, was der Welt bevorstand, ist heute dem COVID-19 Dashboard des Center for Systems Science and Engineering (CSSE) an der renommierten US-amerikanischen Johns Hopkins University zu entnehmen, dass wir in wenigen Monaten weltweit mit über 8 Mio. Erkrankungs- und 449.397 COVID-19-assoziierten Todesfälle konfrontiert wurden [1]. Der Ausgang der Pandemie ist trotz der aktuellen erfreulichen Entwicklung in Deutschland weiterhin unklar! In einer solchen Situation werden die Versäumnisse und Lücken im kollektiven Wissen um Medizin und Gesundheit schonungslos offengelegt. Es ist für die Wissenschaft unmöglich, mit dem rasanten Tempo, welches tagesaktuelle Nachrichten vorgeben, mitzuhalten. Offene Frage klären und Wissenslücken mit dem Tempo zu schließen, mit dem das Infektionsgeschehen voranschreitet, sind unmöglich. Gesunder Pragmatismus kann segensreich und zielführend sein. Fehleinschätzungen können gnadenlos zu Rückschlägen führen. Bei der Bewertung von Lösungsvorschlägen gilt es, Umsicht walten zu lassen, aber auch Grenzen zu erkennen, bevor man sich zu fatalen Festlegungen hinreißen lässt. In der Notfall+Rettungsmedizin veröffentlichten wir einen Kommentar von A. Schmitz zum Thema „Gefahr der COVID-19-Ansteckung durch Medikamentenvernebelung“, in dem auf eine mögliche Gefährdung des Rettungsdienstpersonals durch den Einsatz von Verneblermasken hingewiesen wurde [2]. Die Intention des Autors war, darauf hinzuweisen, dass von Maßnahmen, die die Aerosolbildung fördern, für das Behandlerteam mögliche Gefahren ausgehen, die mit einem erhöhten Infektionsrisiko einhergehen könnten. Auf die Notwendigkeit zur Verwendung der persönlichen Schutzausrüstung (PSA), insbesondere der Verwendung von geeigneten Partikelfiltermasken, Augenschutz, Kittel und Handschuhen, wurde dabei hingewiesen. Es wurden mögliche alternative Therapieoptionen mit vermeidlich geringerem Infektionsrisiko diskutiert. Klar ist, dass diese nur infrage kommen, wenn der Zustand des Patienten deren Anwendung erlaubt. Der Autor bezieht daher auch deutlich Stellung dahingehend, dass „indizierte und vielleicht sogar lebensrettende Therapien … dem Patienten … nicht vorenthalten werden“ dürfen [2]. Dieser Kommentar wurde nun in einem Leserbrief kritisch aufgegriffen, der in dieser Ausgabe mit abgedruckt wird und den wir zum Anlass nehmen möchten zu unterstreichen, dass die kritische Auseinandersetzung mit Handlungsempfehlungen stets angebracht ist, dass aber auch viele Unsicherheiten bestehen [21]. Aerosole als möglicher Übertragungsweg für SARS-CoV-2-Infektionen müssen spätestens nach einem Ausbruch mit mehr als 100 COVID-19-Infektionen im Umfeld einer Gemeinde in Frankfurt [3] oder der zweieinhalbstündigen Chorprobe der Berliner Domkantorei [4], aus der 60 von 80 anwesenden Chormitgliedern mit COVID-19-Infektion hervorgingen, ernst genommen werden. Aerosole sind kleinste Flüssigkeitströpfchen, die von Lebewesen unvermeidlich ausgeatmet werden. Die Partikelgröße liegt je nach Definition bei <5 µm. Im Gegensatz zu Tröpfchen können diese Partikel länger in der Luft verweilen und auch über größere Distanzen wirksam werden [5]. Die Bedeutung von Aerosolen für Ansteckungen von Mitarbeitern im Gesundheitswesen wird immer noch diskutiert. Besondere Schwierigkeiten bereitet die Abgrenzung von Übertragungsereignissen, die auch auf andere Übertragungswege zurückzuführen sein können [6]. Es ist unbestritten, dass Vernebler mit einem deutlich messbaren Anstieg von Aerosolpartikeln einhergehen. Das ist ihr konstruktionsbedingter Bestimmungszweck und das ist mehrfach gezeigt worden [5, 7]. Der Nebel kommt dabei tatsächlich zunächst aber nicht aus dem Patienten, sondern aus der Verneblerkammer. Die Arbeitsgruppe um Edwards fand heraus, dass beim Vernebeln von 0,9 % Kochsalzlösung der Anteil der Partikel im Aerosol messbar reduziert werden kann. Dies führten sie insbesondere auf eine veränderte Oberflächenspannung der Flüssigkeit in den Atemwegen zurück [8–10]. Ob sich daraus ein Nutzen für die Reduktion eines eventuellen Infektionsrisikos ziehen lässt, ist aber ungeklärt. Offenbar spielt also für die Aerosolbildung auch eine Rolle, was vernebelt wird. Völlig unklar ist, ob bei Verwendung von Verneblern in dem Nebel auch Tröpfchen enthalten sind, die aus den Atemwegen des Patienten stammen, und ob diese infektiöses Material enthalten, welches ausreichend konzentriert genug ist, um eine Infektion herbeizuführen zu können. Nur sehr wenige Studien mit kleinen Fallzahlen liegen dazu vor [11, 12]. Klinische Studien wie die Arbeiten von Loeb et al. [13], Wong et al. [14] und Raboud et al. [15] sind letztlich ungeeignet, um zwischen der Bedeutung einzelner Maßnahmen unterscheiden zu können, die zu Infektionen beim Behandlerteam führten, weil sich das komplexe Behandlungsgeschehen nicht auf eine einzelne Intervention herunterbrechen lässt. Eine Metaanalyse bleibt daher ohne gute Empfehlung zum Infektionsrisiko beim Einsatz von Verneblern [16]. Eine weitere wichtige Limitation solcher Arbeiten ist außerdem, dass nicht immer klar ist, ob das Personal z. B. durch das Tragen der PSA ausreichend geschützt war. Auch aktuelle Studien bringen hier keine verlässlichen Daten [17]. Für H1N1-Infektionen konnte gezeigt werden, dass anhand des Gehalts an infektiösem Material in der Umgebungsluft das Infektionsrisiko, das von einer Verneblermaske ausgeht, im Vergleich mit Basiswerten nicht nennenswert größer zu sein scheint, während Maßnahmen wie z. B. Absaugen oder Bronchoskopieren zu einer deutlich höheren Freisetzung von Virus-RNA führten [11]. Einige Autoren schließen ein relevantes Risiko durch Vernebler aus [11, 12, 14]. Dieser Einschätzung schließt sich auch die Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e. V. (DGP) in ihrem Positionspapier zur praktischen Umsetzung der apparativen Differenzialtherapie der akuten respiratorischen Insuffizienz bei COVID-19 an [18]. Das heißt jedoch nicht, dass eine Infektion nicht dennoch stattfinden könnte. Schließlich ist der Patient infiziert. Deshalb sei hier nochmals auf die WHO-Leitlinie zur Vermeidung von Ansteckung beim Umgang mit COVID-19-Patienten hingewiesen, insbesondere die Empfehlung zur Verwendung der PSA [19]. Indizierte Maßnahmen sollten durchgeführt werden. Der Schutz der Behandler ist dabei aber keinesfalls zu vernachlässigen und genauso wichtig wie die Behandlung des Patienten mit allen gebotenen und Erfolg versprechenden Maßnahmen. Ein abweichendes Vorgehen kann nur zugelassene Verfahren einbeziehen. Kontraindikationen sind zu beachten, Risiken sind individuell abzuwägen. Neue Verfahren müssen ihre Wirksamkeit im Rahmen geeigneter klinischer Studien unter Beweis stellen. Was nicht passieren darf, ist, dass wir aus Angst vor Ansteckung auf Therapiemaßnahmen verzichten, statt uns adäquat vor einem gegebenen Infektionsrisiko zu schützen. Jeder einzelne Mitarbeiter im Gesundheitswesen ist unverzichtbar und stellt zur Bekämpfung der Pandemie eine dringend benötigte Ressource dar, die mit allen Mittel geschützt werden muss. Sinnvoll erscheint, das Vorgehen der Erkrankungsschwere anzupassen. Eine aktuelle Empfehlung zur Behandlung von akuten Asthmaanfällen in Zeiten von COVID-19 [20] differenziert hier zwischen milden/moderaten, schweren und lebensbedrohlichen Anfällen und richtet danach das Vorgehen aus. Der Einsatz von Verneblern ist hierbei dem lebensbedrohlichen Anfall vorbehalten. Dabei wird neben der Verneblung von Medikamenten auf die Möglichkeit der kombinierten Sauerstofftherapie hingewiesen. Zur Prävention nosokomialer Infektionen über die Aerosolroute sind ganz offenkundig weitere Forschungsarbeiten erforderlich, um Situationen, medizinische Verfahren oder Geräte zu identifizieren, die mit einem erhöhten Risiko der Aerosolübertragung verbunden sein können. Auch fehlen Definition der Verfahren, die Aerosole erzeugen, sowie Studien zur Reduktion von Ansteckungen im Gesundheitswesen durch Aerosolbildung [6]. Die kritische Auseinandersetzung mit Bekanntem und Unbekanntem ist unverzichtbarer Bestandteil der Medizin. Gerade in der Notfallmedizin sind viele Zusammenhänge nicht ausreichend gut erforscht. Wir ermutigen unsere Leser wie unsere Autoren gleichermaßen, sich dieser Tatsache zu stellen und sich im wissenschaftlichen Disput damit auseinanderzusetzen.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient — Solano County, California, February 2020

          On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California ( 1 ). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient’s transfer to hospital B, a real-time reverse transcription–polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce. HCP with potential exposures to the index patient at hospital A were identified through medical record review. Hospital and health department staff members contacted HCP for initial risk stratification and classified HCP into categories of high, medium, low, and no identifiable risk, according to CDC guidance.* HCP at high or medium risk were furloughed and actively monitored; those at low risk were asked to self-monitor for symptoms for 14 days from their last exposure. † Nasopharyngeal and oropharyngeal specimens were collected once from HCP who developed symptoms consistent with COVID-19 § during their 14-day monitoring period, and specimens were tested for SARS-CoV-2 using real-time RT-PCR at the California Department of Public Health. Serologic testing and testing for other respiratory viruses was not performed. The investigation team, including hospital, local and state health departments, and CDC staff members, attempted to contact all 43 tested HCP by phone to conducted interviews regarding index patient exposures using a standardized exposure assessment tool. Two-sided p-values were calculated using Fisher’s exact test for categorical variables and Wilcoxon rank-sum test for continuous variables; p-values 60 1/3 (33) 3/34 (9) Median (IQR) total estimated time in patient room, mins 120 (120–420) 25 (10–50) 0.06 Median (IQR) total estimated time in patient room during AGPs, mins¶ 95 (0–160) 0 (0–3) 0.13 Came within 6 ft of index patient 3/3 (100) 30/34 (91) 1.00 Reported direct skin-to-skin contact with index patient 0/3 (0) 8/34 (24) 1.00 Index patient either masked or on closed-system ventilator when contact occurred Always 0/3 (0) 7/34 (23) 0.58 Sometimes 2/3 (67) 10/34 (32) Never 1/3 (33) 14/34 (45) Abbreviations: AGPs = aerosol-generating procedures; COVID-19 = coronavirus disease 2019; IQR = interquartile range. * Versus sometimes or never. † No HCP reported use of gowns, N95 respirators, powered air-purifying respirators (PAPRs), or eye protection during any patient care activities for index patient. § Denominators for PPE use during AGPs are numbers of HCP exposed to AGPs. ¶ This was estimated by asking each interviewed staff member to report the number and average duration of each exposure to the patient during AGPs. Total estimated duration for each AGP was calculated by multiplying the number of exposures by average duration of exposure during that AGP. Total estimated exposure time for all AGPs was calculated by adding total duration of exposures across all AGPs. Discussion HCP are at high risk for acquiring infections during novel disease outbreaks, especially before transmission dynamics are fully characterized. The cases reported here are among the first known reports of occupational transmission of SARS-CoV-2 to HCP in the United States, although more cases have since been identified ( 2 ). Little is known to date about SARS-CoV-2 transmission in health care settings. Reports from Illinois, Singapore, and Hong Kong have described cohorts of HCP exposed to patients with COVID-19 without any documented HCP transmission ( 3 – 5 ); most HCP exposures in these cases occurred with patients while HCP were using contact, droplet, or airborne precautions. §§ As community transmission of COVID-19 increases, determining whether HCP infections are acquired in the workplace or in the community becomes more difficult. This investigation presented a unique opportunity to analyze exposures associated with COVID-19 transmission in a health care setting without recognized community exposures. Describing exposures among HCP who did and did not develop COVID-19 can inform guidance on how to best protect HCP. Among a cohort of 121 exposed HCP, 43 of whom were symptomatic and tested, three developed confirmed COVID-19, despite multiple unprotected exposures among HCP. HCP who developed COVID-19 had longer durations of exposure to the index patient; exposures during nebulizer treatments and BiPAP were also more common among HCP who developed COVID-19. These findings underscore the heightened COVID-19 transmission risk associated with prolonged, unprotected patient contact and the importance of ensuring that HCP exposed to patients with confirmed or suspected COVID-19 are protected. CDC recommends use of N95 or higher-level respirators and airborne infection isolation rooms when performing AGPs for patients with suspected or confirmed COVID-19; for care that does not include AGPs, CDC recommends use of respirators where available. ¶¶ In California, the Division of Occupational Safety and Health Aerosol Transmissible Diseases standard requires respirators for HCP exposed to potentially airborne pathogens such as SARS-CoV-2; PAPRs are required during AGPs.*** Studies of other respiratory pathogens have documented increased transmission risk associated with AGPs, many of which can generate large droplets as well as small particle aerosols ( 6 ). A recent study found that SARS-CoV-2 generated through nebulization can remain viable in aerosols <5 μm for hours, suggesting that SARS-CoV-2 could be transmitted at least in part through small particle aerosols ( 7 ). Among the three HCP with COVID-19 at hospital A, two had index patient exposures during AGPs; one did not and reported wearing a facemask but no eye protection for most of the contact time with the patient. Given multiple unprotected exposures among HCP in this investigation, separating risks associated with specific procedures from those associated with duration of exposure and lack of recommended PPE is difficult. More research to determine the risks associated with specific procedures and the protectiveness of different types of PPE, as well as the extent of short-range aerosol transmission of SARS-CoV-2, is needed. Patient source control (e.g., patient wearing a mask or connected to a closed-system ventilator during HCP exposures) might also reduce risk of SARS-CoV-2 transmission. Although the index patient was not masked or ventilated for the majority of hospital A admission, at hospital B, where the patient remained on a closed system ventilator from arrival to receiving a positive test result, none of the 146 HCP identified as exposed developed known COVID-19 infection ( 8 ). Source control strategies, such as masking of patients, visitors, and HCP, should be considered by health care facilities to reduce risk of SARS-CoV-2 transmission. This findings in this report are subject to at least three limitations. First, exposures among HCP were self-reported and are subject to recall bias. Second, the low number of cases limits the ability to detect statistically significant differences in exposures and does not allow for multivariable analyses to adjust for potential confounding. Finally, additional infections might have occurred among asymptomatic exposed HCP who were not tested, or among HCP who were tested as a result of timing and limitations of nasopharyngeal and oropharyngeal specimen testing; serologic testing was not performed. To protect HCP caring for patients with suspected or confirmed COVID-19, health care facilities should continue to follow CDC, state, and local infection control and PPE guidance. Early recognition and prompt isolation, including source control, for patients with possible infection can help minimize unprotected and high-risk HCP exposures. These measures are crucial to protect HCP and preserve the health care workforce in the face of an outbreak already straining the U.S. health care system. Summary What is already known about this topic? Health care personnel (HCP) are at heightened risk of acquiring COVID-19 infection, but limited information exists about transmission in health care settings. What is added by this report? Among 121 HCP exposed to a patient with unrecognized COVID-19, 43 became symptomatic and were tested for SARS-CoV-2, of whom three had positive test results; all three had unprotected patient contact. Exposures while performing physical examinations or during nebulizer treatments were more common among HCP with COVID-19. What are the implications for public health practice? Unprotected, prolonged patient contact, as well as certain exposures, including some aerosol-generating procedures, were associated with SARS-CoV-2 infection in HCP. Early recognition and isolation of patients with possible infection and recommended PPE use can help minimize unprotected, high-risk HCP exposures and protect the health care workforce.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Risk Factors for SARS Transmission from Patients Requiring Intubation: A Multicentre Investigation in Toronto, Canada

            Background In the 2003 Toronto SARS outbreak, SARS-CoV was transmitted in hospitals despite adherence to infection control procedures. Considerable controversy resulted regarding which procedures and behaviours were associated with the greatest risk of SARS-CoV transmission. Methods A retrospective cohort study was conducted to identify risk factors for transmission of SARS-CoV during intubation from laboratory confirmed SARS patients to HCWs involved in their care. All SARS patients requiring intubation during the Toronto outbreak were identified. All HCWs who provided care to intubated SARS patients during treatment or transportation and who entered a patient room or had direct patient contact from 24 hours before to 4 hours after intubation were eligible for this study. Data was collected on patients by chart review and on HCWs by interviewer-administered questionnaire. Generalized estimating equation (GEE) logistic regression models and classification and regression trees (CART) were used to identify risk factors for SARS transmission. Results 45 laboratory-confirmed intubated SARS patients were identified. Of the 697 HCWs involved in their care, 624 (90%) participated in the study. SARS-CoV was transmitted to 26 HCWs from 7 patients; 21 HCWs were infected by 3 patients. In multivariate GEE logistic regression models, presence in the room during fiberoptic intubation (OR = 2.79, p = .004) or ECG (OR = 3.52, p = .002), unprotected eye contact with secretions (OR = 7.34, p = .001), patient APACHE II score ≥20 (OR = 17.05, p = .009) and patient Pa02/Fi02 ratio ≤59 (OR = 8.65, p = .001) were associated with increased risk of transmission of SARS-CoV. In CART analyses, the four covariates which explained the greatest amount of variation in SARS-CoV transmission were covariates representing individual patients. Conclusion Close contact with the airway of severely ill patients and failure of infection control practices to prevent exposure to respiratory secretions were associated with transmission of SARS-CoV. Rates of transmission of SARS-CoV varied widely among patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections.

              Influenza viruses are thought to be spread by droplets, but the role of aerosol dissemination is unclear and has not been assessed by previous studies. Oxygen therapy, nebulised medication and ventilatory support are treatments used in clinical practice to treat influenzal infection are thought to generate droplets or aerosols. Evaluation of the characteristics of droplet/aerosol dispersion around delivery systems during non-invasive ventilation (NIV), oxygen therapy, nebuliser treatment and chest physiotherapy by measuring droplet size, geographical distribution of droplets, decay in droplets over time after the interventions were discontinued. Three groups were studied: (1) normal controls, (2) subjects with coryzal symptoms and (3) adult patients with chronic lung disease who were admitted to hospital with an infective exacerbation. Each group received oxygen therapy, NIV using a vented mask system and a modified circuit with non-vented mask and exhalation filter, and nebulised saline. The patient group had a period of standardised chest physiotherapy treatment. Droplet counts in mean diameter size ranges from 0.3 to > 10 µm were measured with an counter placed adjacent to the face and at a 1-m distance from the subject/patient, at the height of the nose/mouth of an average health-care worker. NIV using a vented mask produced droplets in the large size range (> 10 µm) in patients (p = 0.042) and coryzal subjects (p = 0.044) compared with baseline values, but not in normal controls (p = 0.379), but this increase in large droplets was not seen using the NIV circuit modification. Chest physiotherapy produced droplets predominantly of > 10 µm (p = 0.003), which, as with NIV droplet count in the patients, had fallen significantly by 1 m. Oxygen therapy did not increase droplet count in any size range. Nebulised saline delivered droplets in the small- and medium-size aerosol/droplet range, but did not increase large-size droplet count. NIV and chest physiotherapy are droplet (not aerosol)-generating procedures, producing droplets of > 10 µm in size. Due to their large mass, most fall out on to local surfaces within 1 m. The only device producing an aerosol was the nebuliser and the output profile is consistent with nebuliser characteristics rather than dissemination of large droplets from patients. These findings suggest that health-care workers providing NIV and chest physiotherapy, working within 1 m of an infected patient should have a higher level of respiratory protection, but that infection control measures designed to limit aerosol spread may have less relevance for these procedures. These results may have infection control implications for other airborne infections, such as severe acute respiratory syndrome and tuberculosis, as well as for pandemic influenza infection.
                Bookmark

                Author and article information

                Contributors
                Heiko.Trentzsch@med.uni-muenchen.de
                Journal
                Notf Rett Med
                Notf Rett Med
                Notfall & Rettungsmedizin
                Springer Medizin (Heidelberg )
                1434-6222
                1436-0578
                14 July 2020
                : 1-3
                Affiliations
                [1 ]Institut für Notfallmedizin und Medizinmanagement (INM), Klinikum der Universität München, LMU München, Schillerstr. 53, 80336 München, Deutschland
                [2 ]Notfallvorsorge Oldenburg Nord, Malteser Hilfsdienst e. V., Oldenburg, Deutschland
                [3 ]GRID grid.411544.1, ISNI 0000 0001 0196 8249, Zentrum für öffentliches Gesundheitswesen und Versorgungsforschung Tübingen, , Universitätsklinikum Tübingen, ; Tübingen, Deutschland
                [4 ]GRID grid.415600.6, ISNI 0000 0004 0592 9783, Notfallmedizinisches Zentrum, Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin u. Schmerztherapie, , Bundeswehrkrankenhaus Ulm, ; Ulm, Deutschland
                [5 ]GRID grid.411656.1, ISNI 0000 0004 0479 0855, Universitätsklinik für Anästhesiologie und Schmerztherapie, , Universitätsspital Bern, ; Bern, Schweiz
                [6 ]GRID grid.419835.2, ISNI 0000 0001 0729 8880, Klinikum Nürnberg – Klinik für Kardiologie – Zentrale Notaufnahme Süd, ; Breslauer Str. 201, 90471 Nürnberg, Deutschland
                Article
                739
                10.1007/s10049-020-00739-y
                7359438
                79ad662a-5f46-4cc5-b26f-321e786d2ab1
                © Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Kommentar

                Comments

                Comment on this article