8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Metallothioneins I/II Expression in Rat Strains with Genetically Different Susceptibility to Experimental Autoimmune Encephalomyelitis

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: Compared to the Dark Agouti (DA), the Albino Oxford (AO) rat strain exhibits lower susceptibility to the induction of experimental autoimmune encephalomyelitis (EAE). Here, we investigated the potential contribution of the heavy metal-binding proteins metallothioneins (MTs) I/II to these effects. Methods: Rats were immunized with bovine brain homogenate emulsified in complete Freund's adjuvant or only with complete Freund's adjuvant. The expression patterns of MTs mRNA and proteins and tissue concentrations of Zn<sup>2+</sup> and Cu<sup>2+</sup> were estimated in the brain and in the liver on days 7 and 12 after immunization, by real-time PCR, immunohistochemistry and inductively coupled plasma spectrometry, respectively. Additionally, the hepatic transforming growth factor beta and nuclear factor kappa B immunoreactivities were tested. Results: Clinical signs of EAE were not induced in AO rats, but they upregulated the expression of MT I/II proteins in the brain (hippocampus and cerebellum) and in the liver, similarly as DA rats. The transcriptional activation of MT-I occurred, however, only in DA rats, which accumulated also more zinc in the brain and in the liver. In contrast, intact AO rats had greater hepatic MT-I mRNA immunoreactivity and more Cu<sup>2+</sup> in the hippocampus. Besides, in immunized AO rats a high upregulation of transforming growth factor beta and nuclear factor kappa B immunoreactivities was found in several hepatic structures (vascular endothelium, Kupffer cells and hepatocytes). Conclusions: Our data show that AO and DA rats differ in constitutive and inductive MT-I gene expression in the brain and in the liver, as well as in the hepatic cytokine profile, suggesting that these mechanisms may contribute to the discrepancy in the susceptibility to EAE.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens.

          The central nervous system (CNS) regulates innate immune responses through hormonal and neuronal routes. The neuroendocrine stress response and the sympathetic and parasympathetic nervous systems generally inhibit innate immune responses at systemic and regional levels, whereas the peripheral nervous system tends to amplify local innate immune responses. These systems work together to first activate and amplify local inflammatory responses that contain or eliminate invading pathogens, and subsequently to terminate inflammation and restore host homeostasis. Here, I review these regulatory mechanisms and discuss the evidence indicating that the CNS can be considered as integral to acute-phase inflammatory responses to pathogens as the innate immune system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metallothionein: the multipurpose protein

            Metallothioneins (MTs) are intracellular, low molecular, low molecular weight, cysteine-rich proteins. Ubiquitous in eukaryotes, MTs have unique structural characteristics to give potent metal-binding and redox capabilities. A primary role has not been identified, and remains elusive, as further functions continue to be discovered. The most widely expressed isoforms in mammals, MT-1 and MT-2, are rapidly induced in the liver by a wide range of metals, drugs and inflammatory mediators. In teh gut and pancreas, MT responds mainly to Zn status. A brain isoform, MT-3, has a specific neuronal growth inhibitory activity, while MT-1 and MT-2 have more diverse functions related to their thiolate cluster structure. These include involvement in Zn homeostasis, protection against heavy metal (especially Cd) and oxidant damage, and metabolic regulation via Zn donation, sequestration and/or redox control. Use of mice with altered gene expression has enhance our understanding of the multifaceted role of MT, emphasised in this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local control of the immune response in the liver.

              The physiological function of the liver--such as removal of pathogens and antigens from the blood, protein synthesis and metabolism--requires an immune response that is adapted to these tasks and is locally regulated. Pathogenic microorganisms must be efficiently eliminated while the large number of antigens derived from the gastrointestinal tract must be tolerized. From experimental observations it is evident that the liver favours the induction of tolerance rather than the induction of immunity. The liver probably not only is involved in transplantation tolerance but contributes as well to tolerance to orally ingested antigens (entering the liver with portal-venous blood) and to containment of systemic immune responses (antigen from the systemic circulation entering the liver with arterial blood). This review summarizes the experimental data that shed light on the molecular mechanisms and the cell populations of the liver involved in local immune regulation in the liver. Although hepatocytes constitute the major cell population of the liver, direct interaction of hepatocytes with leukocytes in the blood is unlikely. Sinusoidal endothelial cells, which line the hepatic sinusoids and separate hepatocytes from leukocytes in the sinusoidal lumen, and Kupffer cells, the resident macrophage population of the liver, can directly interact with passenger leukocytes. In the liver, clearance of antigen from the blood occurs mainly by sinusoidal endothelial cells through very efficient receptor-mediated endocytosis. Liver sinusoidal endothelial cells constitutively express all molecules necessary for antigen presentation (CD54, CD80, CD86, MHC class I and class II and CD40) and can function as antigen-presenting cells for CD4+ and CD8+ T cells. Thus, these cells probably contribute to hepatic immune surveillance by activation of effector T cells. Antigen-specific T-cell activation is influenced by the local microenvironment. This microenvironment is characterized by the physiological presence of bacterial constituents such as endotoxin and by the local release of immunosuppressive mediators such as interleukin-10, prostaglandin E2 and transforming growth factor-beta. Different hepatic cell populations may contribute in different ways to tolerance induction in the liver. In vitro experiments revealed that naive T cells are activated by resident sinusoidal endothelial cells but do not differentiate into effector T cells. These T cells show a cytokine profile and a functional phenotype that is compatible with the induction of tolerance. Besides sinusoidal endothelial cells, other cell populations of the liver, such as dendritic cells, Kupffer cells and perhaps also hepatocytes, may contribute to tolerance induction by deletion of T cells through induction of apoptosis.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2013
                April 2013
                13 March 2013
                : 20
                : 3
                : 152-163
                Affiliations
                Departments of aPhysiology and Immunology and bChemistry and Biochemistry, Medical Faculty, University of Rijeka, Rijeka, Croatia
                Author notes
                *Biserka Radošević-Stašić, Medical Faculty, University of Rijeka, B. Branchetta 22, HR-51000 Rijeka (Croatia), E-Mail biserkars@medri.uniri.hr
                Article
                346546 Neuroimmunomodulation 2013;20:152-163
                10.1159/000346546
                23485922
                79b47080-7423-42f8-837c-a8869856a3eb
                © 2013 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 02 August 2012
                : 17 December 2012
                Page count
                Figures: 6, Pages: 12
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Copper,Albino Oxford and Dark Agouti rats,Zinc ,Experimental autoimmune encephalomyelitis,Metallothioneins I/II

                Comments

                Comment on this article