39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL.

          Abstract

          CAR-T targeting CD19 have been successfully used in a variety of B-cell malignancies but patients may eventually relapse. Here, the authors show that CD19 CAR-T resistance in pre-B cell ALL can be due to the induction of a myeloid lineage switch through an epigenetic alterations in master regulators of B cell development.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Acute lymphoblastic leukaemia.

          Acute lymphoblastic leukaemia occurs in both children and adults but its incidence peaks between 2 and 5 years of age. Causation is multifactorial and exogenous or endogenous exposures, genetic susceptibility, and chance have roles. Survival in paediatric acute lymphoblastic leukaemia has improved to roughly 90% in trials with risk stratification by biological features of leukaemic cells and response to treatment, treatment modification based on patients' pharmacodynamics and pharmacogenomics, and improved supportive care. However, innovative approaches are needed to further improve survival while reducing adverse effects. Prognosis remains poor in infants and adults. Genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic changes and sequence mutations that contribute to leukaemogenesis, define new disease subtypes, affect responsiveness to treatment, and might provide novel prognostic markers and therapeutic targets for personalised medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commitment to the B-lymphoid lineage depends on the transcription factor Pax5.

            The Pax5 gene encoding the B-cell-specific activator protein (BSAP) is expressed within the haematopoietic system exclusively in the B-lymphoid lineage, where it is required in vivo for progression beyond the pro-B-cell stage. However, Pax5 is not essential for in vitro propagation of pro-B cells in the presence of interleukin-7 and stromal cells. Here we show that pro-B cells lacking Pax5 are also incapable of in vitro B-cell differentiation unless Pax5 expression is restored by retroviral transduction. Pax5-/- pro-B cells are not restricted in their lineage fate, as stimulation with appropriate cytokines induces them to differentiate into functional macrophages, osteoclasts, dendritic cells, granulocytes and natural killer cells. As expected for a clonogenic haematopoietic progenitor with lymphomyeloid developmental potential, the Pax5-/- pro-B cell expresses genes of different lineage-affiliated programmes, and restoration of Pax5 activity represses this lineage-promiscuous transcription. Pax5 therefore plays an essential role in B-lineage commitment by suppressing alternative lineage choices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pax5: the guardian of B cell identity and function.

              The transcription factor Pax5 is essential for commitment of lymphoid progenitors to the B lymphocyte lineage. Pax5 fulfils a dual role by repressing B lineage 'inappropriate' genes and simultaneously activating B lineage-specific genes. This transcriptional reprogramming restricts the broad signaling capacity of uncommitted progenitors to the B cell pathway, regulates cell adhesion and migration, induces V(H)-DJ(H) recombination, facilitates (pre-)B cell receptor signaling and promotes development to the mature B cell stage. Conditional Pax5 inactivation in early and late B lymphocytes revealed an essential role for Pax5 in controlling the identity and function of B cells throughout B lymphopoiesis. PAX5 has also been implicated in human B cell malignancies, as it is deregulated by chromosomal translocations in a subset of acute lymphoblastic leukemias and non-Hodgkin lymphomas.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                27 July 2016
                2016
                : 7
                : 12320
                Affiliations
                [1 ]Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, USA
                [2 ]Genetics Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, USA
                [3 ]Division of Oncology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania , Philadelphia, Pennsylvania 19104, USA
                [4 ]Ben Towne Center for Childhood Cancer Research, Seattle Children's Hospital, and Department of Pediatrics, University of Washington , Seattle, Washington 98105, USA
                Author notes
                [*]

                Present address: Department of Pediatric Hematology and Oncology, The Edmond and Lily Safra's Children's Hospital, Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel.

                Author information
                http://orcid.org/0000-0002-4871-5262
                Article
                ncomms12320
                10.1038/ncomms12320
                4974466
                27460500
                79c0fdd6-4dc5-4af0-81f0-a6e69505bbfd
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 May 2016
                : 21 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article