64
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex

      1 , 2 , 3 , 4 , 5 , 1
      Annual Review of Neuroscience
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroscientists have often described cognition and emotion as separable processes implemented by different regions of the brain, such as the amygdala for emotion and the prefrontal cortex for cognition. In this framework, functional interactions between the amygdala and prefrontal cortex mediate emotional influences on cognitive processes such as decision-making, as well as the cognitive regulation of emotion. However, neurons in these structures often have entangled representations, whereby single neurons encode multiple cognitive and emotional variables. Here we review studies using anatomical, lesion, and neurophysiological approaches to investigate the representation and utilization of cognitive and emotional parameters. We propose that these mental state parameters are inextricably linked and represented in dynamic neural networks composed of interconnected prefrontal and limbic brain structures. Future theoretical and experimental work is required to understand how these mental state representations form and how shifts between mental states occur, a critical feature of adaptive cognitive and emotional behavior.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication.

          We present a method for learning nonlinear systems, echo state networks (ESNs). ESNs employ artificial recurrent neural networks in a way that has recently been proposed independently as a learning mechanism in biological brains. The learning method is computationally efficient and easy to use. On a benchmark task of predicting a chaotic time series, accuracy is improved by a factor of 2400 over previous techniques. The potential for engineering applications is illustrated by equalizing a communication channel, where the signal error rate is improved by two orders of magnitude.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Separate neural systems value immediate and delayed monetary rewards.

            When humans are offered the choice between rewards available at different points in time, the relative values of the options are discounted according to their expected delays until delivery. Using functional magnetic resonance imaging, we examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery. We demonstrate that two separate systems are involved in such decisions. Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. Furthermore, the relative engagement of the two systems is directly associated with subjects' choices, with greater relative fronto-parietal activity when subjects choose longer term options.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurons in the orbitofrontal cortex encode economic value.

              Economic choice is the behaviour observed when individuals select one among many available options. There is no intrinsically 'correct' answer: economic choice depends on subjective preferences. This behaviour is traditionally the object of economic analysis and is also of primary interest in psychology. However, the underlying mental processes and neuronal mechanisms are not well understood. Theories of human and animal choice have a cornerstone in the concept of 'value'. Consider, for example, a monkey offered one raisin versus one piece of apple: behavioural evidence suggests that the animal chooses by assigning values to the two options. But where and how values are represented in the brain is unclear. Here we show that, during economic choice, neurons in the orbitofrontal cortex (OFC) encode the value of offered and chosen goods. Notably, OFC neurons encode value independently of visuospatial factors and motor responses. If a monkey chooses between A and B, neurons in the OFC encode the value of the two goods independently of whether A is presented on the right and B on the left, or vice versa. This trait distinguishes the OFC from other brain areas in which value modulates activity related to sensory or motor processes. Our results have broad implications for possible psychological models, suggesting that economic choice is essentially choice between goods rather than choice between actions. In this framework, neurons in the OFC seem to be a good candidate network for value assignment underlying economic choice.
                Bookmark

                Author and article information

                Journal
                Annual Review of Neuroscience
                Annu. Rev. Neurosci.
                Annual Reviews
                0147-006X
                1545-4126
                June 2010
                June 2010
                : 33
                : 1
                : 173-202
                Affiliations
                [1 ]Department of Neuroscience, Columbia University, New York, NY 10032;
                [2 ]Department of Psychiatry, Columbia University, New York, NY 10032;
                [3 ]W.M. Keck Center on Brain Plasticity and Cognition, Columbia University, New York, NY 10032;
                [4 ]Kavli Institute for Brain Sciences, Columbia University, New York, NY 10032;
                [5 ]Mahoney Center for Brain and Behavior, Columbia University, New York, NY 10032; email: ,
                Article
                10.1146/annurev.neuro.051508.135256
                3108339
                20331363
                79c27a37-c806-4b63-8d00-a9a1fbe0b7c9
                © 2010
                History

                Sociology,Psychology,Neurology,Social & Behavioral Sciences,Health & Social care,Public health

                Comments

                Comment on this article