26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Duplications and losses in gene families of rust pathogens highlight putative effectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          OrthoMCL: identification of ortholog groups for eukaryotic genomes.

          The identification of orthologous groups is useful for genome annotation, studies on gene/protein evolution, comparative genomics, and the identification of taxonomically restricted sequences. Methods successfully exploited for prokaryotic genome analysis have proved difficult to apply to eukaryotes, however, as larger genomes may contain multiple paralogous genes, and sequence information is often incomplete. OrthoMCL provides a scalable method for constructing orthologous groups across multiple eukaryotic taxa, using a Markov Cluster algorithm to group (putative) orthologs and paralogs. This method performs similarly to the INPARANOID algorithm when applied to two genomes, but can be extended to cluster orthologs from multiple species. OrthoMCL clusters are coherent with groups identified by EGO, but improved recognition of "recent" paralogs permits overlapping EGO groups representing the same gene to be merged. Comparison with previously assigned EC annotations suggests a high degree of reliability, implying utility for automated eukaryotic genome annotation. OrthoMCL has been applied to the proteome data set from seven publicly available genomes (human, fly, worm, yeast, Arabidopsis, the malaria parasite Plasmodium falciparum, and Escherichia coli). A Web interface allows queries based on individual genes or user-defined phylogenetic patterns (http://www.cbil.upenn.edu/gene-family). Analysis of clusters incorporating P. falciparum genes identifies numerous enzymes that were incompletely annotated in first-pass annotation of the parasite genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

            Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis.

              Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                26 June 2014
                2014
                : 5
                : 299
                Affiliations
                [1] 1Plant Molecular and Cellular Biology Program, University of Florida Gainesville, FL, USA
                [2] 2Southern Research Station, Southern Institute of Forest Genetics, USDA Forest Service Saucier, MS, USA
                [3] 3Department of Forest Sciences, University of British Columbia Vancouver, BC, Canada
                [4] 4Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, INRA-Nancy, UMR Institut National de la Recherche Agronomique – Université de Lorraine Champenoux, France
                [5] 5US Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
                [6] 6Biology Department, University of Florida Gainesville, FL, USA
                [7] 7Genetics Institute, University of Florida Gainesville, FL, USA
                [8] 8School of Forest Resources and Conservation, University of Florida Gainesville, FL, USA
                Author notes

                Edited by: Sébastien Duplessis, INRA, France

                Reviewed by: Dag Ahren, Lund University, Sweden; Yao-Cheng Lin, VIB/Ghent University, Belgium

                *Correspondence: John M. Davis, School of Forest Resources and Conservation, University of Florida, 365 Newins-Ziegler Hall, Gainesville, FL 32611, USA e-mail: jmdavis@ 123456ufl.edu

                This article was submitted to Plant-Microbe Interaction, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00299
                4071342
                25018762
                79d8ada5-66b3-4bd6-a3b1-bd2c733b4427
                Copyright © 2014 Pendleton, Smith, Feau, Martin, Grigoriev, Hamelin, Nelson, Burleigh and Davis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 April 2014
                : 06 June 2014
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 63, Pages: 13, Words: 8880
                Categories
                Plant Science
                Original Research Article

                Plant science & Botany
                effectors,rust pathogens,secretome,genome evolution,comparative genomics
                Plant science & Botany
                effectors, rust pathogens, secretome, genome evolution, comparative genomics

                Comments

                Comment on this article