69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental Evolution of Legionella pneumophila in Mouse Macrophages Leads to Strains with Altered Determinants of Environmental Survival

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts.

          Author Summary

          Legionella pneumophila is an accidental pathogen of humans, responsible for the severe, often-fatal pneumonia known as Legionnaires' disease. In the environment, L. pneumophila survives and replicates within protozoa by co-opting the intracellular machinery of these microbial predators. These freshwater encounters between bacteria and protozoa likely provided L. pneumophila with the selective pressures required to evolve into an intracellular pathogen. Many of the host pathways that L. pneumophila manipulates during infection are highly conserved and this is presumably what allows L. pneumophila to infect human cells. It is likely that L. pneumophila is suboptimally adapted to replication within mammalian cells, however, as replication within human cells is thought to be an evolutionary dead end. In this study, we developed an experimental evolution approach to determine what unique selective pressures might be present within mammalian hosts and how these pressures might modify this pathogen. We subjected L. pneumophila to continuous passage within mouse macrophages for several months, selecting for spontaneous mutations that resulted in improved fitness within these cells. We sequenced the genomes of each of the adapted strains, measured the population dynamics of each evolving population, and identified mutations that improve replication in mammalian cells and alter bacterial fitness in amoebae.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Legionnaires' disease: description of an epidemic of pneumonia.

          An explosive, common-source outbreak of pneumonia caused by a previously unrecognized bacterium affected primarily persons attending an American Legion convention in Philadelphia in July, 1976. Twenty-nine of 182 cases were fatal. Spread of the bacterium appeared to be air borne. The source of the bacterium was not found, but epidemiologic analysis suggested that exposure may have occurred in the lobby of the headquarters hotel or in the area immediately surrounding the hotel. Person-to-person spread seemed not to have occurred. Many hotel employees appeared to be immune, suggesting that the agent may have been present in the vicinity, perhaps intermittently, for two or more years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

            Bacterial pathogens evolve during the infection of their human hosts 1-8 , but separating adaptive and neutral mutations remains challenging 9-11 . Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repeatability and contingency in the evolution of a key innovation in phage lambda.

              The processes responsible for the evolution of key innovations, whereby lineages acquire qualitatively new functions that expand their ecological opportunities, remain poorly understood. We examined how a virus, bacteriophage λ, evolved to infect its host, Escherichia coli, through a novel pathway. Natural selection promoted the fixation of mutations in the virus's host-recognition protein, J, that improved fitness on the original receptor, LamB, and set the stage for other mutations that allowed infection through a new receptor, OmpF. These viral mutations arose after the host evolved reduced expression of LamB, whereas certain other host mutations prevented the phage from evolving the new function. This study shows the complex interplay between genomic processes and ecological conditions that favor the emergence of evolutionary innovations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2012
                May 2012
                31 May 2012
                : 8
                : 5
                : e1002731
                Affiliations
                [1 ]Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
                [2 ]Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
                [3 ]Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
                [4 ]Public Health Ontario, Toronto, Ontario, Canada
                [5 ]Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
                Yale University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: AWE AM RRI. Performed the experiments: AWE YY. Analyzed the data: AWE AM RRI. Wrote the paper: AWE RRI.

                Article
                PPATHOGENS-D-12-00018
                10.1371/journal.ppat.1002731
                3364954
                22693450
                79d9b24b-5d20-4231-8cdd-d280f680db70
                Ensminger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 January 2012
                : 19 April 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Genomics
                Microbiology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article