62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Minibrain/Dyrk1a Regulates Food Intake through the Sir2-FOXO-sNPF/NPY Pathway in Drosophila and Mammals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Feeding behavior is one of the most essential activities in animals, which is tightly regulated by neuroendocrine factors. Drosophila melanogaster short neuropeptide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) regulate food intake. Understanding the molecular mechanism of sNPF and NPY signaling is critical to elucidate feeding regulation. Here, we found that minibrain ( mnb) and the mammalian ortholog Dyrk1a target genes of sNPF and NPY signaling and regulate food intake in Drosophila melanogaster and mice. In Drosophila melanogaster neuronal cells and mouse hypothalamic cells, sNPF and NPY modulated the mnb and Dyrk1a expression through the PKA-CREB pathway. Increased Dyrk1a activated Sirt1 to regulate the deacetylation of FOXO, which potentiated FOXO-induced sNPF/NPY expression and in turn promoted food intake. Conversely, AKT-mediated insulin signaling suppressed FOXO-mediated sNPF/NPY expression, which resulted in decreasing food intake. Furthermore, human Dyrk1a transgenic mice exhibited decreased FOXO acetylation and increased NPY expression in the hypothalamus, as well as increased food intake. Our findings demonstrate that Mnb/Dyrk1a regulates food intake through the evolutionary conserved Sir2-FOXO-sNPF/NPY pathway in Drosophila melanogaster and mammals.

          Author Summary

          Feeding behavior is one of the most essential activities in animals. Abnormal feeding behaviors cause metabolic syndromes including obesity and diabetes. Neuropeptides regulate feeding behavior in animals from nematode to human. Here, we presented molecular genetic evidences of how neuropeptides regulate food intake using fruit fly and mouse model systems. Drosophila short neuropetide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) are produced from neurons in the brain of fruit fly and mouse, respectively. These neuropeptides turned on the minibrain, in mammals also called Dyrk1a, a target gene through the PKA-CREB pathway. Then, this Mnb/Dyrk1a enzyme activated Sir2/Sirt1 enzyme, which activated FOXO transcriptional factor, turning on the expression of a sNPF/NPY target gene. The increased sNPF/NPY increased food intake in fruit flies and mice. On the contrary, increased food intake induced insulin and activated insulin signaling. When insulin signaling is activated, FOXO transcriptional factor inhibited expression of a sNPF/NPY target gene. The inhibited sNPF/NPY reduced food intake. These findings indicate that FOXO transcription factor acts as a gatekeeper for fasting–feeding transition by regulating sNPF/NPY expression in Drosophila and mammals.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic transformation of Drosophila with transposable element vectors.

          Exogenous DNA sequences were introduced into the Drosophila germ line. A rosy transposon (ry1), constructed by inserting a chromosomal DNA fragment containing the wild-type rosy gene into a P transposable element, transformed germ line cells in 20 to 50 percent of the injected rosy mutant embryos. Transformants contained one or two copies of chromosomally integrated, intact ry1 that were stably inherited in subsequent generations. These transformed flies had wild-type eye color indicating that the visible genetic defect in the host strain could be fully and permanently corrected by the transferred gene. To demonstrate the generality of this approach, a DNA segment that does not confer a recognizable phenotype on recipients was also transferred into germ line chromosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation.

            The FOXO family of forkhead transcription factors plays a key role in a variety of biological processes, including metabolism, cell proliferation, and oxidative stress response. We previously reported that Foxo1, a member of the FOXO family, is regulated through reversible acetylation catalyzed by histone acetyltransferase cAMP-response element-binding protein (CREB)-binding protein (CBP) and NAD-dependent histone deacetylase silent information regulator 2, and that the acetylation at Lys-242, Lys-245, and Lys-262 of Foxo1 attenuates its transcriptional activity. However, the molecular mechanism by which acetylation modulates Foxo1 activity remains unknown. Here, we show that the positive charge of these lysines in Foxo1 contributes to its DNA-binding, and acetylation at these residues by CBP attenuates its ability to bind cognate DNA sequence. Remarkably, we also show that acetylation of Foxo1 increases the levels of its phosphorylation at Ser-253 through the phosphatidylinositol 3-kinase-protein kinase B signaling pathway, and this effect was overridden on the acetylation-deficient Foxo1 mutant. Furthermore, in in vitro kinase reactions, the association of wild-type Foxo1 and its target DNA sequence inhibits the protein kinase B-dependent phosphorylation of Foxo1, whereas mutated Foxo1 proteins, which mimic constitutively acetylated states, are efficiently phosphorylated even in the presence of the DNA. These results suggest that acetylation regulates the function of Foxo1 through altering the affinity with the target DNA and the sensitivity for phosphorylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake.

              Leptin controls food intake by regulating the transcription of key neuropeptides in the hypothalamus. The mechanism by which leptin regulates gene expression is unclear, however. Here we show that delivery of adenovirus encoding a constitutively nuclear mutant FoxO1, a transcription factor known to control liver metabolism and pancreatic beta-cell function, to the hypothalamic arcuate nucleus of rodents results in a loss of the ability of leptin to curtail food intake and suppress expression of Agrp. Conversely, a transactivation-deficient FoxO1 mutant prevents induction of Agrp by fasting. We also find that FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of Agrp and Pomc through transcriptional squelching. FoxO1 promotes opposite patterns of coactivator-corepressor exchange at the Pomc and Agrp promoters, resulting in activation of Agrp and inhibition of Pomc. Thus, FoxO1 represents a shared component of pathways integrating food intake and peripheral metabolism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2012
                August 2012
                2 August 2012
                : 8
                : 8
                : e1002857
                Affiliations
                [1 ]Aging Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
                [2 ]Functional Genomics Program, University of Science and Technology (UST), Daejeon, Korea
                [3 ]Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
                [4 ]Institute for Brain Science and Technology, FIRST Research Group, Inje University, Busan, Korea
                [5 ]Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Korea
                Buck Institute, United States of America
                Author notes

                Conceived and designed the experiments: S-HH K-SL S-JK MT KY. Performed the experiments: S-HH K-SL S-JK A-KK HB M-SJ. Analyzed the data: S-HH K-SL S-JK O-YK W-JS KY. Wrote the paper: S-HH K-SL MT KY.

                Article
                PGENETICS-D-12-00166
                10.1371/journal.pgen.1002857
                3410862
                22876196
                79da5a97-39ba-47d2-925e-b04732245b50
                Hong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2012
                : 7 June 2012
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Genetics
                Heredity
                Phenotypes
                Molecular Genetics
                Gene Regulation
                Animal Genetics
                Gene Function
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Mouse
                Molecular Cell Biology
                Signal Transduction
                Neuroscience
                Behavioral Neuroscience
                Neurophysiology

                Genetics
                Genetics

                Comments

                Comment on this article